2021

MATHEMATICS - GENERAL

Second Paper

Full Marks : 100
Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যগুলি পূণমান নির্দেশক।

মডিউল - III
(মান : ৫০)
বিভাগ - ক
(মান : ২৫)
১নং প্রশ্ন এবং যে-কোনো দুটি প্রক্নের উত্তর দাও।
১। (ক) যে-কোনো একটি প্রশ্নের উত্তর দাও :
2×
(অ) यদি তিনটি সেটের সেট $A=\{p, q, r\}$, সেট $B=\{s, t, u\}$ এবং সেট $C=\{s, u\}$, তবে দেখাও যে, $A \times(B \backslash C)=(A \times B) \backslash(A \times C) ।$
(আ) দেখাও যে কোনো দলে একটির বেশি একক উপাদান থাকতে পারে না।
(ই) একটি মণ্ডল $(R,+, \cdot)$-তে $a^{2}=a, \forall a \in R$ । প্রমাণ করো, $a+a=0, \forall a \in R$, [যেখানে 0 হল R-এর শূন্য উপাদান]।
(খ) যে-কোনো একটি প্রশ্নের উত্তর দাও :
(অ) দেখাও যে $f: \mathbb{R} \rightarrow \mathbb{R}$ যেখানে $f(x)=x^{2}+x, \forall x \in \mathbb{R}$ চিত্রণটি একৈক এবং পরিব্যপ্ত কোনোটি নয়।
(আ) প্রমাণ করো $(G, *)$ একটি বিনিময়যোগ্য দল হবে যদি এবং কেবলমাত্র যদি $(a * b)^{2}=a^{2} * b^{2}$ হয়; $\forall a, b \in G$ ।
(ই) একটি চক্র $(R,+, \cdot)$-এর উপচক্র S-এর উদাহরণসহ সংজ্ঞা দাও।

২। (ক) ধরা যাক $G=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right): a, b, d\right.$ বাস্তব সংখ্যা এবং $\left.a d \neq 0\right\}$ । স্বাভাবিক ম্যাট্রিক্স গুণনের নিয়ম মেনে প্রমাণ করো G একটি দল (Group)।
(খ) কোনো দলের উপদলের সংজ্ঞা দাও। যদি a, b দুটি নির্দিষ্ট ধনাত্মক পূর্ণসংখ্যা হয় এবং $H=\{a x+b y \mid x, y \in \mathbb{Z}\}$ হয়, দেখাও যে $(H,+),(\mathbb{Z},+)-এ র$ একটি উপদল গঠন করে।

(খ) দেখাও যে $\left\{1, w, w^{2}\right\}$ সেটটি সাধারণ গুণফলের নিয়মে একটি দল গঠন করে। (যেখানে $w^{3}=1$)
(গ) যদি $f: A \rightarrow B$ একটি উভচিত্রণ হয়, তাহলে দেখাও যে, f^{-1} টিও একটি উভচিত্রণ হববে।
৩+8+৩

8। (ক) यमि $A=\{1,2,3,4\}, B=\{3,4,5,6\}$ এবং $C=\{4,6\}$ হয়, তবে দেখাও যে $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ । (খ) প্রমাণ করো যে $W=\{(x, y, z): x+y+z=0\}, \mathbb{R}^{3}-এ র$ একটি উপদেশ। ৫+৫

৫। (ক) দ্বিঘাতরাশি $2 x^{2}+2 y^{2}+2 z^{2}+2 x y+2 x z$ নির্দিষ্টভাবে ধনাত্মক কি না পরীক্ষা করো।
(খ) Cayley-Hamilton-এর উপপাদ্যটির $\left(\begin{array}{cc}3 & -1 \\ 2 & 4\end{array}\right)$ ম্যাট্রিক্স-এর ক্ষেত্রে সত্যতা যাচাই করো। এখান থেকে ম্যাট্রিক্সটির বিপরীত ম্যাট্রিক্স নির্ণয় করো।
৫+(৩+২)

বিভাগ - খ

(মান: २৫)

৬নং প্রশ্ন এবং যে-কোনো দুটি প্রশ্নের উত্তর দাও।

৬। (ক) যে-কোনো একটি প্রশ্নের উত্তর দাও :
(অ) $\frac{x-2}{1}=\frac{y+1}{2}=\frac{z-1}{3}$ সরলরেখাটি $x+3 y-z=0$ সমতলটিকে যে বিন্দুতে ছেদ করে তার স্থানাঙ্ক নির্ণয় করো।
(আ) তিনটি co-ordinate axes-এর সঙ্গে সমান কোণ তৈরি করে এমন সরলরেখার direction cosine নির্ণয় করো।
(ই) $(5,2,4),(6,-1,2)$ এবং $(8,-7, K)$ বিन্দু তিনটি সমরেখ হলে, K-এর মান নির্ণয় করো।
(খ) যে-কোনো একটি প্রশ্নের উত্তর দাও :
0×
(অ) যদি $y z$-সমতলটি $(3,5,-7)$ ও $(-2,1,8)$ বিन্দুগামী সরলরেখাকে (a, b, c) বিন্দুতে $3: 2$ অনুপাতে অন্তর্বিভক্ত করে, তাহলে a, b, c-এর মান নির্ণয় করো।
(আ) α-এর কোন মানের জন্য $x+y+z=\sqrt{3} \alpha$ সমতলটি $x^{2}+y^{2}+z^{2}-2 x-2 y-2 z-6=0$ গোলকটিকে স্পর্শ করে, তার মান নির্ণয় করো।
(ই) যে শঙ্কুর শীর্ষবিন্দু $(1,2,3)$ বিन্দুতে এবং ভূমি $x^{2}+y^{2}=25, z=0$ বত্ররেখা; তার সমীকরণ নির্ণয় করো।
१। (ক) $P(a, b, c)$ বিन्দू रতে $x=0, y=0, z=0$ সমতল তিনটির ওপর PL, PM, PN তিনটি লম্ব অঙ্কিত হয়। দেখাও যে, LMN সমতলের সমীকরণ $x / a+y / b+z / c=2$ ।
(খ) $5 x-y-z=0=x-2 y+z+3$ এবং $7 x-4 y-2 z=0=x-y+z-3$ সরলরেখা দুটির মব্যে ন্যূনতম দূরত্ব নির্ণয় করো।

৮। (ক) একটি ঘনকের ছয়টি তলের থেকে একটি বিন্দুর দূরত্ধের বর্গের যোগফল ঞ্রুবক হুলে দেখাও যে বিন্দুটির সঞ্চারপথ একটি গোলক।
(খ) যদি একটি সরলরেখা কোনো ঘনকের কর্ণ্ণর সজ্দে α, β, γ এবং δ কোণ করে, তাহলে দেখাও যে,

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=4 / 3 .
$$

(গ) যে লন্ব বৃত্তাকার শঙ্কু $2 x=3 y=5 z$ সরলরেখাগামী ও যার অক্ষ $x=y=z$, সেই শঙ্কুর সমীকরণ নিণর় করো।

৯। (ক) $\frac{x-3}{2}=\frac{y-5}{-3}=\frac{z+3}{-2}$ ఆ $\frac{x-4}{-3}=\frac{y+1}{2}=\frac{z+4}{3}$ সরলরেখাদ্দয়ের বহ্নকারী সমতলেের সমীকরণ নিত়্ করো।
(খ) $(3,2,1)$ বিनদूটির দূরত্ব $\frac{x-1}{3}=\frac{y}{4}=\frac{z-2}{1}$ সরলরেখা হতে বার করো।
১০। (ক) $(1,0,-1)$ শীর্य বিশিষ্ট এবং $x^{2}+y^{2}+z^{2}=4, x+y+z=1$ বৃত্তগামী শঙ্কুর সমীকরণ নির্ণয় করো।
(খ) $x^{2}+y^{2}+z^{2}+2 x-4 y+5=0, x-2 y+3 z+1=0$ বৃত্তটি যেে গোলকের গুরুবৃব্ত তার সমীকরণ নিণ্র করো।

১১নং প্রশ্ন এবং যে-কোনো দুটি প্রশেরে উত্তর দাও।

১১। (ক) যে-কোনো একটি প্রশ্নের উত্তর দাও ঃ
(অ) Cauchy-এর মধ্যম মান উপপাদ্য বিবৃত করো।
(অ) দেখাও বে $\underset{(x, y) \rightarrow(0,0)}{L t} \frac{x y}{x^{2}+y^{2}}$-এর অস্তিত্ব নেইই।
(খ) যে-কোনো একটি প্রশ্নের উত্তর দাও :
(অ) Maclaurin's উপপাদ্য-এর দ্বারা $(1+x)^{5}$-কে শ্রেণিতে বিস্ত্তত করো।
(অ) L'Hospital-এর নিয়ম ব্যবহার করে নিম্নলিখিত সীমার মান বের করো :

$$
\lim _{x \rightarrow 0} \frac{e^{x}-e^{\sin x}}{x-\sin x}
$$

(ই) $f(x, y)=|x|+|y|$ এই অপেক্ষকটি $(0,0)$-তে সন্তত কি না যাচাই করো।

১২। (ক) যদি $u(x, y)=\tan ^{-1} \frac{x^{3}+y^{3}}{x-y}$ হয়, তবে সমসত্ত্ব অপেক্ষকের ওপর Euler's-এর উপপাদ্য ব্যবহার করে প্রমাণ করো $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$ ।
(খ) দেখাও যে $x^{2} \log (1 / x)$-এর চরম মান $\frac{1}{2 e}$ । যেখানে, $x>0$ ।
১৩। (ক) $\sin x$-কে x-এর Power-এ range of validity উল্লেখ করে বিস্তৃত করো।
(খ) यদি $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ হয়, তবে দেখাও যে $u_{x x}+u_{y y}+u_{z z}=\frac{-3}{(x+y+z)^{2}}$ ।
ゝ8। (ক) মান निর্ণয় করো: $\underset{x \rightarrow 0}{\operatorname{Lt}}\left(\frac{\tan x}{x}\right)^{1 / x}$ ।
(খ) Implicit function উপপাদ্য-এর সাহায্যে $x^{2}+x y+y^{2}-7=0$-কে $(2,1)$ বিন্দুর নিকট $y=\phi(x)$ আকারে প্রকাশ করো।

১৫। (ক) দুটি চলরাশির জন্য একটি সমসত্ত্ব অপেক্ষকের ওপরে Euler-এর উপপাদ্যটি বিবৃত করো এবং প্রমাণ করো।
(খ) $x^{2}+y^{2}+z^{2}$ রাশিটির অবম মান নির্ণয় করো যেখানে $2 x+3 y+5 z=30$ ।

১৬নং প্রশ্ন এবং যে-কোনো তিনটি প্রশ্নের উত্তর দাও।

১৬। যে-কোনো একটি প্রশ্নের উত্তর দাও :
(ক) $\int_{0}^{\infty} \frac{d x}{(x+1)(x+2)}$ অভিসারী কি না যাচাই করো।
(খ) মান নির্ণয় করো : $\int_{0}^{2} \int_{-y}^{\sqrt{y}}(1+x+y) d x d y$
(গ) Gamma-অপেক্ষকের সংজ্ঞা দাও। Gamma অপেক্ষক ও Beta অপেক্ষকের সম্পর্ক কী তা লেখো।
$\beta(1 / 2,1 / 2)$-এর মান নির্ণয় করো।
$s+s+s$

১१। यमि $I_{n}=\int_{0}^{\pi / 2} x^{n} \sin x d x,(n>1)$ হয়, প্রমাণ করো $I_{n}+n(n-1) I_{n-2}=n(\pi / 2)^{n-1}$ ।
2৮। $x=a(\theta+\sin \theta), y=a(1+\cos \theta)$ cycloid-টি তার নিম্নদেশের চতুর্দিকে ঘূর্রায়নের ফলে লব্ধ বস্তুটির ঘনফলল নির্ণয় করো। 8

১৯। প্রমাণ করো যে, $\int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{\sin \theta}} \times \int_{0}^{\pi / 2} \sqrt{\sin \theta} d \theta=\pi$ ।
२०। $(0, \mathrm{C})$ ও ($\mathrm{C}, 0)$ বিन্দুর মধ্যস্থ $x^{2 / 3}+y^{2 / 3}=\mathrm{C}^{2 / 3}$ বক্ররেখাটির দৈর্ঘ্য নির্ণয় করো।
২১। $y=0 ; x=1 ; y=x$ সরলরেখা দ্বারা সীমাবদ্ধ ত্রিভুজের মব্ব্যে $\iint \sqrt{4 x^{2}-y^{2}} d x d y$-এর মান নিণয় করো।

```
বিভাগ - গ
(মান: ১০)
```

২२। যে-কোনো একটি প্রশ্নের উত্তর দাও :
(ক) $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=\sin x$-এর পূরক অপেক্কটটি নিণ্ণয় করো।
(খ) $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y=e^{2 x}$-এর বিলেয সমাকল নির্ণয় করো।
২৩। যে-কোনো দুটি প্রকেনের উত্তর দাও:
(ক) সমাধান করো : $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x^{2} \cdot e^{3 x}$
(খ) সমাধান করো: $: \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+5 y=10 \sin x$
(গ) সমাধান করো ঃ $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=x \log x$
(ঘ) সমাধান করো ঃ $(x+1)^{2} \frac{d^{2} y}{d x^{2}}-4(x+1) \frac{d y}{d x}+4 y=x^{2}$

[English Version]

The figures in the margin indicate full marks.
Module - III
(Marks : 50)
Group - A
(Marks : 25)

Answer question no. 1 and any two questions from the rest.

1. (a) Answer any one question:
(i) For the three sets $A=\{p, q, r\}, B=(s, t, u)$ and $C=\{s, u\}$.

Verify that $A \times(B \backslash C)=(A \times B) \backslash(A \times C)$.
(ii) Show that in a group, there cannot be more than one identity element.
(iii) If in a ring $(R,+, \cdot), a^{2}=a, \forall a \in R$; prove that $a+a=0, \forall a \in R$, $(0$ is the zero element of R).
(b) Answer any one question :
(i) Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$, where $f(x)=x^{2}+x, \forall x \in \mathbb{R}$ is neither injective nor surjective.
(ii) Prove that a group $\left(G,{ }^{*}\right)$ is commutative iff $\left(a^{*} b\right)^{2}=a^{2} * b^{2} ; \forall a, b \in G$.
(iii) Give the definition with example of a subrings of a ring $(R,+, \cdot)$.
2. (a) Let G be a set of all 2×2 matrices $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$, where a, b, d are real numbers such that $a d \neq 0$. Prove that G is a group under usual matrix multiplication.
(b) Define a subgroup of a group (G, \cdot). Let a, b be two fixed positive integers and

$$
H=\{a x+b y \mid x, y \in \mathbb{Z}\},
$$

show that $(H,+)$ is a subgroup of the group $(\mathbb{Z},+)$ of integers.
3. (a) Check whether the set of vectors $\{(1,0,0),(0,1,0),(0,0,1)\}$ form a basis of \mathbb{R}^{3}. (\mathbb{R}-set of real numbers)
(b) Prove that the set $\left\{1, w, w^{2}\right\}$, where $w^{3}=1$, forms a group with respect to multiplication.
(c) If $f: A \rightarrow B$ be a bijective mapping, then prove that f^{-1} is also bijective.
4. (a) If $A=\{1,2,3,4\}, B=\{3,4,5,6\}$ and $C=\{4,6\}$, then show that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
(b) Prove that $W=\{(x, y, z): x+y+z=0\}$ is a subspace of \mathbb{R}^{3}.
5. (a) Check whether the quadratic form $2 x^{2}+2 y^{2}+2 z^{2}+2 x y+2 x z$ is positive definite or not.
(b) Verify Cayley-Hamilton theorem for the matrix $\left(\begin{array}{cc}3 & -1 \\ 2 & 4\end{array}\right)$ and hence find the inverse of the matrix. $5+(3+2)$

Group - B

(Marks: 25)
Answer question no. 6 and any two questions from the rest.
6. (a) Answer any one question:
(i) Find the point at which the line $\frac{x-2}{1}=\frac{y+1}{2}=\frac{z-1}{3}$ meets the plane $x+3 y-z=0$.
(ii) Find the direction cosines of a straight line that makes equal angles with each of the co-ordinate axes.
(iii) If three points $(5,2,4),(6,-1,2)$ and $(8,-7, K)$ are collinear, find the value of K.
(b) Answer any one question :
(i) If the $y z$-plane divides the straight line joining the point $(3,5,-7)$ and $(-2,1,8)$ in the ratio $3: 2$ internally at the point (a, b, c). Find a, b, c.
(ii) Find the value of α for which the plane

$$
x+y+z=\sqrt{3} \alpha
$$

touches the sphere $x^{2}+y^{2}+z^{2}-2 x-2 y-2 z-6=0$.
(iii) Find the equation of the right circular cone whose vertex is the point $(1,2,3)$ and base is the curve $x^{2}+y^{2}=25, z=0$.
7. (a) Perpendiculars PL, PM, PN are drawn from the point $\mathrm{P}(a, b, c)$ to the co-ordinate planes. Show that the equation of the plane LMN is $x / a+y / b+z / c=2$.
(b) Find the shortest distance between the lines $5 x-y-z=0=x-2 y+z+3$ and $7 x-4 y-2 z=0=x-y+z-3$.
8. (a) A point moves such that the sum of the squares of its distances from the six faces of a cube is constant. Show that its locus is a sphere.
(b) A line makes angles α, β, γ and δ with the four diagonals of a cube, then prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=4 / 3$.
(c) Find the equation of the right circular cone which passes through the line $2 x=3 y=5 z$ and has the line $x=y=z$ as its axes.
9. (a) Find the equation of plane containing the lines $\frac{x-3}{2}=\frac{y-5}{-3}=\frac{z+3}{-2}$ and $\frac{x-4}{-3}=\frac{y+1}{2}=\frac{z+4}{3}$.
(b) Find the distance of the point $(3,2,1)$ from the line $\frac{x-1}{3}=\frac{y}{4}=\frac{z-2}{1}$.
10. (a) Find the equation of the cone whose vertex is $(1,0,-1)$ and which passes through the circle $x^{2}+y^{2}+z^{2}=4, x+y+z=1$.
(b) Obtain the equation of the sphere having the circle $x^{2}+y^{2}+z^{2}+2 x-4 y+5=0, x-2 y+3 z+1=0$ is a great circle.
Module - IV
(Marks : 50)
Group - A
(Marks : 25)

Answer question no. 11 and any two questions from the rest.
11. (a) Answer any one question:
(i) State Cauchy Mean Value Theorem.
(ii) Show that $\underset{(x, y) \rightarrow(0,0)}{L t} \frac{x y}{x^{2}+y^{2}}$ does not exist.
(b) Answer any one question:
(i) With the help of Maclaurin's theorem expand $(1+x)^{5}$ in a series.
(ii) Use L'Hospital rule to evaluate $\lim _{x \rightarrow 0} \frac{e^{x}-e^{\sin x}}{x-\sin x}$.
(iii) Examine the continuity of the function $f(x, y)=|x|+|y|$ at the origin.
12. (a) Let $u(x, y)=\tan ^{-1} \frac{x^{3}+y^{3}}{x-y}$. Then apply Euler's theorem on homogeneous function to prove $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$.
(b) Show that the maximum value of $x^{2} \log (1 / x)$ is $\frac{1}{2 e}$. [where $x>0$]
13. (a) Expand $\sin x$ in an infinite series stating the range of validity of the expansion.
(b) If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, then show that $u_{x x}+u_{y y}+u_{z z}=\frac{-3}{(x+y+z)^{2}}$.
14. (a) Evaluate : $\operatorname{Lt}_{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x}$.
(b) Use the Implicit function theorem to solve $x^{2}+x y+y^{2}-7=0$ in the form $y=\phi(x)$ near the point $(2,1)$.
15. (a) State and prove Euler's theorem on homogeneous function of two variables.
(b) Find the minimum value of $x^{2}+y^{2}+z^{2}$ subject to the condition $2 x+3 y+5 z=30$.

Group - B
 (Marks : 15)

Answer question no. 16 and any three questions from the rest.
16. Answer any one question:
(a) Examine the convergence of $\int_{0}^{\infty} \frac{d x}{(x+1)(x+2)}$.
(b) Evaluate : $\int_{0}^{2} \int_{-y}^{\sqrt{y}}(1+x+y) d x d y$.
(c) Define Gamma function. What is the relation between Beta function and Gamma function? Find the value of $\beta(1 / 2,1 / 2)$.
17. If $I_{n}=\int_{0}^{\pi / 2} x^{n} \sin x d x(n>1)$, prove that $I_{n}+n(n-1) I_{n-2}=n(\pi / 2)^{n-1}$.
18. Find the volume of the solid of revolution obtained by revolving the cycloid $x=a(\theta+\sin \theta)$, $y=a(1+\cos \theta)$ about its base.
19. Prove that $\int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{\sin \theta}} \times \int_{0}^{\pi / 2} \sqrt{\sin \theta} d \theta=\pi$.
20. Find the length of the arc of the curve $x^{2 / 3}+y^{2 / 3}=C^{2 / 3}$ between the points ($0, \mathrm{C}$) and (C, 0). 4
21. Evaluate $\iint \sqrt{4 x^{2}-y^{2}} d x d y$ over the triangular region bounded by $y=0 ; x=1 ; y=x$.

Group - C
 (Marks : 10)

22. Answer any one question:
(a) Find the complementary function of the differential equation : $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=\sin x$
(b) Obtain the particular integral of $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y=e^{2 x}$.
23. Answer any two questions:
(a) Solve : $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x^{2} \cdot e^{3 x}$
(b) Solve : $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+5 y=10 \sin x$
(c) Solve : $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=x \log x$
(d) Solve : $(x+1)^{2} \frac{d^{2} y}{d x^{2}}-4(x+1) \frac{d y}{d x}+4 y=x^{2}$
