2021

MATHEMATICS — GENERAL

Second Paper

Full Marks : 100

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পুর্ণমান নির্দেশক।

মডিউল - III

(মান : ৫০)

বিভাগ - ক

(মান : ২৫)

১নং প্রশ্ন এবং **যে-কোনো দুটি** প্রশ্নের উত্তর দাও।

- **১।** (ক) **যে-কোনো একটি** প্রশ্নের উত্তর দাও ঃ
 - (অ) যদি তিনটি সেটের সেট $A = \{p, q, r\}$, সেট $B = \{s, t, u\}$ এবং সেট $C = \{s, u\}$, তবে দেখাও যে, $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$ |
 - (আ) দেখাও যে কোনো দলে একটির বেশি একক উপাদান থাকতে পারে না।
 - (ই) একটি মণ্ডল $(R, +, \cdot)$ -তে $a^2 = a, \forall a \in R$ । প্রমাণ করো, $a + a = 0, \forall a \in R$, [যোখানে 0 হল R-এর শূন্য উপাদান]।
 - (খ) **যে-কোনো একটি** প্রশ্নের উত্তর দাও ঃ
 - (অ) দেখাও যে $f: \mathbb{R} \to \mathbb{R}$ যেখানে $f(x) = x^2 + x, \ \forall x \in \mathbb{R}$ চিত্রণটি একৈক এবং পরিব্যপ্ত কোনোটি নয়।
 - (আ) প্রমাণ করো (G, *) একটি বিনিময়যোগ্য দল হবে যদি এবং কেবলমাত্র যদি $(a * b)^2 = a^2 * b^2$ হয়; $\forall a, b \in G$ ।
 - (ই) একটি চক্র (R, +, ·)-এর উপচক্র S-এর উদাহরণসহ সংজ্ঞা দাও।

২। (ক) ধরা যাক $G = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, b, d$ বাস্তব সংখ্যা এবং $ad \neq 0 \right\}$ । স্বাভাবিক ম্যাট্রিক্স গুণনের নিয়ম মেনে প্রমাণ করো G একটি দল (Group)।

(খ) কোনো দলের উপদলের সংজ্ঞা দাও। যদি *a*, *b* দুটি নির্দিষ্ট ধনাত্মক পূর্ণসংখ্যা হয় এবং *H* = {*ax* + *by* | *x*, *y* ∈ ℤ} হয়, দেখাও যে (*H*, +), (ℤ, +)-এর একটি উপদল গঠন করে। *৫*+(১+8)

Please Turn Over

২×১

v×১

(ক) {(1,0,0), (0,1,0), (0,0,1)} এই সেটটি R³-এর একটি বুনিয়াদ গঠন করে কি না পরীক্ষা করো। (R-বাস্তব সংখ্যার সেট)
 (খ) দেখাও যে {1, w, w²} সেটটি সাধারণ গুণফলের নিয়মে একটি দল গঠন করে। (যেখানে w³ = 1)

(গ) যদি
$$f: A \to B$$
 একটি উভচিত্রণ হয়, তাহলে দেখাও যে, f^{-1} টিও একটি উভচিত্রণ হবে। $\circ+8+\circ$

- 81 (ক) যদি A = {1, 2, 3, 4}, B = {3, 4, 5, 6} এবং C = {4, 6} হয়, তবে দেখাও যে A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) ।
 (খ) প্রমাণ করো যে W = {(x, y, z) : x + y + z = 0}, ℝ³-এর একটি উপদেশ।
- ৫। (ক) দ্বিঘাতরাশি $2x^2 + 2y^2 + 2z^2 + 2xy + 2xz$ নির্দিষ্টভাবে ধনাত্মক কি না পরীক্ষা করো।

বিভাগ - খ

(মান : ২৫)

৬নং প্রশ্ন এবং **যে-কোনো দুটি** প্রশ্নের উত্তর দাও।

- ৬। (ক) **যে-কোনো একটি** প্রশের উত্তর দাও ঃ

 - (আ) তিনটি co-ordinate axes-এর সঙ্গে সমান কোণ তৈরি করে এমন সরলরেখার direction cosine নির্ণয় করো।
 - (ই) (5, 2, 4), (6, -1, 2) এবং (8, -7, K) বিন্দু তিনটি সমরেখ হলে, K-এর মান নির্ণয় করো।
 - (খ) **যে-কোনো একটি** প্রশ্নের উত্তর দাও ঃ
 - (অ) যদি yz-সমতলটি (3, 5, -7) ও (-2, 1, 8) বিন্দুগামী সরলরেখাকে (a, b, c) বিন্দুতে 3 : 2 অনুপাতে অন্তর্বিভক্ত করে, তাহলে a, b, c-এর মান নির্ণয় করো।
 - (আ) α -এর কোন মানের জন্য $x + y + z = \sqrt{3}\alpha$ সমতলটি $x^2 + y^2 + z^2 2x 2y 2z 6 = 0$ গোলকটিকে স্পর্শ করে, তার মান নির্ণয় করো।
 - (ই) যে শঙ্কুর শীর্ষবিন্দু (1, 2, 3) বিন্দুতে এবং ভূমি $x^2 + y^2 = 25, z = 0$ বক্ররেখা; তার সমীকরণ নির্ণয় করো।
- ৭। (ক) P(a, b, c) বিন্দু হতে x = 0, y = 0, z = 0 সমতল তিনটির ওপর PL, PM, PN তিনটি লম্ব অঞ্চিত হয়। দেখাও যে, LMN সমতলের সমীকরণ $\frac{x_a' + y_b' + z_c' = 2}{b}$
 - (খ) 5x y z = 0 = x 2y + z + 3 এবং 7x 4y 2z = 0 = x y + z 3 সরলরেখা দুটির মধ্যে ন্যূনতম দূরত্ব নির্ণয় করো। ৫+৫

২×১

v×s

- ৮। (ক) একটি ঘনকের ছয়টি তলের থেকে একটি বিন্দুর দূরত্বের বর্গের যোগফল ধ্রুবক হলে দেখাও যে বিন্দুটির সঞ্চারপথ একটি গোলক।
 - (খ) যদি একটি সরলরেখা কোনো ঘনকের কর্ণের সঙ্গে α , β , γ এবং δ কোণ করে, তাহলে দেখাও যে,

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}$$

(গ) যে লম্ব বৃত্তাকার শঙ্কু 2x = 3y = 5z সরলরেখাগামী ও যার অক্ষ x = y = z, সেই শঙ্কুর সমীকরণ নির্ণয় করো। ৩+৩+৪

১০। (ক) (1, 0, -1) শীর্ষ বিশিষ্ট এবং x² + y² + z² = 4, x + y + z = 1 বৃত্তগামী শঙ্কুর সমীকরণ নির্ণয় করো।
 (খ) x² + y² + z² + 2x - 4y + 5 = 0, x - 2y + 3z + 1 = 0 বৃত্তটি যে গোলকের গুরুবৃত্ত তার সমীকরণ নির্ণয় করো।
 ৫+৫

```
মডিউল - IV
(মান : ৫০)
বিভাগ - ক
(মান : ২৫)
```

১১। (ক) *যে-কোনো একটি* প্রশ্নের উত্তর দাও ঃ

(অ) Cauchy-এর মধ্যম মান উপপাদ্য বিবৃত করো।

(আ) দেখাও যে
$$Lt = \frac{xy}{x^2 + y^2}$$
 -এর অস্তিত্ব নেই।

- (খ) যে-কোনো একটি প্রশ্নের উত্তর দাও ঃ
 - (অ) Maclaurin's উপপাদ্য-এর দ্বারা $(1+x)^5$ -কে শ্রেণিতে বিস্তৃত করো।
 - (আ) L'Hospital-এর নিয়ম ব্যবহার করে নিম্নলিখিত সীমার মান বের করো ঃ

$$\lim_{x \to 0} \frac{e^x - e^{\sin x}}{x - \sin x}$$

(ই) f(x, y) = |x| + |y| এই অপেক্ষকটি (0, 0)-তে সন্তত কি না যাচাই করো।

Please Turn Over

(3)

২×১

(4)

১২। (ক) যদি $u(x,y) = \tan^{-1} \frac{x^3 + y^3}{x - y}$ হয়, তবে সমসত্ত্ব অপেক্ষকের ওপর Euler's-এর উপপাদ্য ব্যবহার করে প্রমাণ

$$\overline{\Phi(A)} \quad x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$$

(খ) দেখাও যে
$$x^2 \log \left(\frac{1}{x} \right)$$
-এর চরম মান $\frac{1}{2e}$ । যেখানে, $x > 0$ । $lpha + lpha$

১৩। (ক) sinx-কে x-এর Power-এ range of validity উল্লেখ করে বিস্তৃত করো।

(খ) যদি
$$u = \log(x^3 + y^3 + z^3 - 3xyz)$$
 হয়, তবে দেখাও যে $u_{xx} + u_{yy} + u_{zz} = \frac{-3}{(x + y + z)^2}$ ($\alpha + \alpha$

- **১৪**। (ক) মান নির্ণয় করো $Lt = Lt \left(\frac{\tan x}{x}\right)^{1/x}$ ।
 - (খ) Implicit function উপপাদ্য-এর সাহায্যে x² + xy + y² 7 = 0-কে (2, 1) বিন্দুর নিকট y = \u03c6(x) আকারে প্রকাশ করো।
- **১৫।** (ক) দুটি চলরাশির জন্য একটি সমসত্ত্ব অপেক্ষকের ওপরে Euler-এর উপপাদ্যটি বিবৃত করো এবং প্রমাণ করো।
 - (খ) $x^2 + y^2 + z^2$ রাশিটির অবম মান নির্ণয় করো যেখানে 2x + 3y + 5z = 30। (১+৪)+৫

বিভাগ - খ

(মান : ১৫)

১৬নং প্রশ্ন এবং যে-কোনো তিনটি প্রশ্নের উত্তর দাও।

১৬। যে-কোনো একটি প্রশ্নের উত্তর দাও ঃ

_

(ক)
$$\int_{0}^{\infty} \frac{dx}{(x+1)(x+2)}$$
 অভিসারী কি না যাচাই করো। ৩

(খ) মান নির্ণয় করো ঃ
$$\int_{0-y}^{2\sqrt{y}} (1+x+y) dx dy$$
 ৩

গে) Gamma-অপেক্ষকের সংজ্ঞা দাও। Gamma অপেক্ষক ও Beta অপেক্ষকের সম্পর্ক কী তা লেখো।

$$\beta(\frac{1}{2},\frac{1}{2})$$
-এর মান নির্ণয় করো। ১+১+১

১৭। যদি
$$I_n = \int_{0}^{\pi/2} x^n \sin x \, dx, (n > 1)$$
 হয়, প্রমাণ করো $I_n + n(n-1)I_{n-2} = n\left(\frac{\pi/2}{2}\right)^{n-1}$ । 8

১৮। $x = a(\theta + \sin\theta), y = a(1 + \cos\theta)$ cycloid-টি তার নিম্নদেশের চতুর্দিকে ঘূর্ণায়নের ফলে লব্ধ বস্তুটির ঘনফল নির্ণয় করো। ৪

১৯। প্রমাণ করো যে,
$$\int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin\theta}} \times \int_{0}^{\pi/2} \sqrt{\sin\theta} \, d\theta = \pi + 8$$

২০।
$$(0, C)$$
 ও $(C, 0)$ বিন্দুর মধ্যস্থ $x^{2/3} + y^{2/3} = C^{2/3}$ বক্ররেখাটির দৈর্ঘ্য নির্ণয় করো। 8

২১।
$$y=0; x=1; y=x$$
 সরলরেখা দ্বারা সীমাবদ্ধ ত্রিভুজের মধ্যে $\iint \sqrt{4x^2 - y^2} \, dx \, dy$ -এর মান নির্ণয় করো। 8

২২। **যে-কোনো একটি** প্রশ্নের উত্তর দাও ঃ

(খ)
$$\frac{d^2 y}{dx^2} - \frac{dy}{dx} - 2y = e^{2x}$$
 - এর বিশেষ সমাকল নির্ণয় করো।

(ক) সমাধান করো : $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = x^2 \cdot e^{3x}$

(খ) সমাধান করো ঃ
$$\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + 5y = 10\sin x$$

(গ) সমাধান করো ঃ
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = x \log x$$

(ঘ) সমাধান করো
$$(x+1)^2 \frac{d^2 y}{dx^2} - 4(x+1)\frac{dy}{dx} + 4y = x^2$$

Please Turn Over

(5)

২×১

(6)

[English Version]

The figures in the margin indicate full marks.

Module - III

(Marks : 50)

Group - A

(Marks : 25)

Answer question no. 1 and any two questions from the rest.

- 1. (a) Answer *any one* question :
 - (i) For the three sets $A = \{p, q, r\}$, B = (s, t, u) and $C = \{s, u\}$. Verify that $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$.
 - (ii) Show that in a group, there cannot be more than one identity element.
 - (iii) If in a ring $(R, +, \cdot)$, $a^2 = a$, $\forall a \in R$; prove that a + a = 0, $\forall a \in R$, (0 is the zero element of R).
 - (b) Answer *any one* question :
 - (i) Show that the function $f: \mathbb{R} \to \mathbb{R}$, where $f(x) = x^2 + x$, $\forall x \in \mathbb{R}$ is neither injective nor surjective.
 - (ii) Prove that a group (G, *) is commutative iff $(a * b)^2 = a^2 * b^2$; $\forall a, b \in G$.
 - (iii) Give the definition with example of a subrings of a ring $(R, +, \cdot)$.
- 2. (a) Let G be a set of all 2×2 matrices $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$, where a, b, d are real numbers such that $ad \neq 0$. Prove that G is a group under usual matrix multiplication.
 - (b) Define a subgroup of a group (G, ·). Let a, b be two fixed positive integers and H = {ax + by | x, y ∈ Z}, show that (H, +) is a subgroup of the group (Z, +) of integers.
- 3. (a) Check whether the set of vectors $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ form a basis of \mathbb{R}^3 . (\mathbb{R} -set of real numbers)
 - (b) Prove that the set $\{1, w, w^2\}$, where $w^3 = 1$, forms a group with respect to multiplication.
 - (c) If $f: A \to B$ be a bijective mapping, then prove that f^{-1} is also bijective. 3+4+3
- 4. (a) If $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}$ and $C = \{4, 6\}$, then show that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
 - (b) Prove that $W = \{(x, y, z) : x + y + z = 0\}$ is a subspace of \mathbb{R}^3 . 5+5

2×1

3×1

5+(1+4)

(7)

5. (a) Check whether the quadratic form $2x^2 + 2y^2 + 2z^2 + 2xy + 2xz$ is positive definite or not.

(b) Verify Cayley-Hamilton theorem for the matrix
$$\begin{pmatrix} 3 & -1 \\ 2 & 4 \end{pmatrix}$$
 and hence find the inverse of the matrix.
5+(3+2)

Group - B

(Marks : 25)

Answer question no. 6 and any two questions from the rest.

6. (a) Answer *any one* question :

- (i) Find the point at which the line $\frac{x-2}{1} = \frac{y+1}{2} = \frac{z-1}{3}$ meets the plane x + 3y z = 0.
- (ii) Find the direction cosines of a straight line that makes equal angles with each of the co-ordinate axes.
- (iii) If three points (5, 2, 4), (6, -1, 2) and (8, -7, K) are collinear, find the value of K.
- (b) Answer *any one* question :
 - (i) If the *yz*-plane divides the straight line joining the point (3, 5, -7) and (-2, 1, 8) in the ratio 3 : 2 internally at the point (*a*, *b*, *c*). Find *a*, *b*, *c*.
 - (ii) Find the value of α for which the plane

$$x + y + z = \sqrt{3}\alpha$$

touches the sphere $x^2 + y^2 + z^2 - 2x - 2y - 2z - 6 = 0$.

- (iii) Find the equation of the right circular cone whose vertex is the point (1, 2, 3) and base is the curve $x^2 + y^2 = 25$, z = 0.
- 7. (a) Perpendiculars PL, PM, PN are drawn from the point P(a, b, c) to the co-ordinate planes. Show that the equation of the plane LMN is $\frac{x_a' + y_b'}{b} + \frac{z_c'}{c} = 2$.
 - (b) Find the shortest distance between the lines 5x y z = 0 = x 2y + z + 3 and 7x 4y 2z = 0 = x y + z 3.
- 8. (a) A point moves such that the sum of the squares of its distances from the six faces of a cube is constant. Show that its locus is a sphere.
 - (b) A line makes angles α , β , γ and δ with the four diagonals of a cube, then prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}$.
 - (c) Find the equation of the right circular cone which passes through the line 2x = 3y = 5z and has the line x = y = z as its axes. 3+3+4

Please Turn Over

T(II)-Mathematics-G-2

5+5

 2×1

- 9. (a) Find the equation of plane containing the lines $\frac{x-3}{2} = \frac{y-5}{-3} = \frac{z+3}{-2}$ and $\frac{x-4}{-3} = \frac{y+1}{2} = \frac{z+4}{3}$.
 - (b) Find the distance of the point (3, 2, 1) from the line $\frac{x-1}{3} = \frac{y}{4} = \frac{z-2}{1}$. 5+5
- 10. (a) Find the equation of the cone whose vertex is (1, 0, -1) and which passes through the circle $x^2 + y^2 + z^2 = 4$, x + y + z = 1.
 - (b) Obtain the equation of the sphere having the circle $x^2 + y^2 + z^2 + 2x 4y + 5 = 0$, x 2y + 3z + 1 = 0is a great circle. 5+5

Module - IV

(Marks : 50)

Group - A

(Marks : 25)

Answer question no. 11 and any two questions from the rest.

11. (a) Answer *any one* question :

(i) State Cauchy Mean Value Theorem.

(ii) Show that
$$Lt = \frac{xy}{x^2 + y^2}$$
 does not exist.

(b) Answer *any one* question :

- (i) With the help of Maclaurin's theorem expand $(1 + x)^5$ in a series.
- (ii) Use L'Hospital rule to evaluate $\lim_{x \to 0} \frac{e^x e^{\sin x}}{x \sin x}$.
- (iii) Examine the continuity of the function f(x, y) = |x| + |y| at the origin.

12. (a) Let $u(x,y) = \tan^{-1} \frac{x^3 + y^3}{x - y}$. Then apply Euler's theorem on homogeneous function to prove

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u \; .$$

(b) Show that the maximum value of $x^2 \log(\frac{1}{x})$ is $\frac{1}{2e}$. [where x > 0] 5+5

3×1

 2×1

(9)

T(II)-Mathematics-G-2

13. (a) Expand sinx in an infinite series stating the range of validity of the expansion.

(b) If
$$u = \log (x^3 + y^3 + z^3 - 3xyz)$$
, then show that $u_{xx} + u_{yy} + u_{zz} = \frac{-3}{(x + y + z)^2}$. 5+5

- 14. (a) Evaluate : $Lt_{x\to 0} \left(\frac{\tan x}{x}\right)^{1/x}$.
 - (b) Use the Implicit function theorem to solve $x^2 + xy + y^2 7 = 0$ in the form $y = \phi(x)$ near the point (2, 1). 5+5
- 15. (a) State and prove Euler's theorem on homogeneous function of two variables.
 - (b) Find the minimum value of $x^2 + y^2 + z^2$ subject to the condition 2x + 3y + 5z = 30. (1+4)+5

Group - B

(Marks : 15)

Answer question no. 16 and any three questions from the rest.

16. Answer any one question :

(a) Examine the convergence of
$$\int_{0}^{\infty} \frac{dx}{(x+1)(x+2)}$$
. 3

(b) Evaluate :
$$\int_{0-y}^{2\sqrt{y}} (1+x+y) dx dy.$$
 3

(c) Define Gamma function. What is the relation between Beta function and Gamma function? Find the value of $\beta(\frac{1}{2}, \frac{1}{2})$. 1+1+1

17. If
$$I_n = \int_{0}^{\frac{\pi}{2}} x^n \sin x \, dx \, (n > 1)$$
, prove that $I_n + n(n-1)I_{n-2} = n\left(\frac{\pi}{2}\right)^{n-1}$.

18. Find the volume of the solid of revolution obtained by revolving the cycloid $x = a(\theta + \sin\theta)$, $y = a(1 + \cos\theta)$ about its base.

19. Prove that
$$\int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin\theta}} \times \int_{0}^{\pi/2} \sqrt{\sin\theta} \, d\theta = \pi \,.$$

Please Turn Over

20. Find the length of the arc of the curve $x^{2/3} + y^{2/3} = C^{2/3}$ between the points (0, C) and (C, 0). 4

21. Evaluate
$$\iint \sqrt{4x^2 - y^2} \, dx \, dy$$
 over the triangular region bounded by $y = 0$; $x = 1$; $y = x$.

Group - C (Marks : 10)

- 22. Answer any one question :
 - (a) Find the complementary function of the differential equation : $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 4y = \sin x$
 - (b) Obtain the particular integral of $\frac{d^2y}{dx^2} \frac{dy}{dx} 2y = e^{2x}$.

23. Answer any two questions :

(a) Solve :
$$\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + y = x^2 \cdot e^{3x}$$

(b) Solve :
$$\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + 5y = 10\sin x$$

(c) Solve:
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = x \log x$$

(d) Solve:
$$(x+1)^2 \frac{d^2 y}{dx^2} - 4(x+1)\frac{dy}{dx} + 4y = x^2$$

(10)

 4×2