2021

PHYSICS - HONOURS
Paper : DSE-A-1(b)
(Laser and Fibre Optics)
Full Marks : 65

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question nos. $\mathbf{1}$ and $\mathbf{2}$ and any four questions from the rest.

1. Answer any five questions:
(a) Distinguish between holography and photography.
(b) What is the physical significance of V-number of an optical fibre?
(c) What fraction of sodium atom to be in the first excited state in a sodium vapor lamp at a temperature of $523 \mathrm{~K}[\lambda=590 \mathrm{~nm}]$?
(d) What is the basic idea of laser cooling?
(e) The Coherence time for the red cadmium line $\left(\lambda=6438 \mathrm{~A}^{\circ}\right)$ is about $10^{-9} \mathrm{~S}$. Estimate the monochromaticity of the line.
(f) Calculate the gap in frequency between two longitudinal modes in a laser cavity of length 300 mm .
(g) An optical fibre has an attenuation of $3.5 \mathrm{~dB} / \mathrm{km}$ at 850 mm . If 0.5 mW of optical power is initially launched into the Fibre, then what is the power level in $\mu \mathrm{W}$ after 4 km .?
2. Answer any three questions.
(a) (i) How does stimulated emission occur in a semiconductor laser?
(ii) Deduce the relations between the frequency of incident photon and energy gap with the conduction band electron energy and valence band hole energy.
(b) (i) Draw a generic block diagram of a fibre optical communication system. What is the specialty of guided mode?
(ii) What are the advantages of using optical fibre sensors?
(c) The electric field associated with a mode is given by $E(t)=E_{0} e^{-\omega_{0} t / 2 Q} e^{2 \pi i v_{0} t}$.
(i) Find out the frequency spectrum associated with this wave train. (which extends from $t=0$ to $t=\infty$)
(ii) Draw the frequency dependence curve w.r.t. intensity and indicate full width half maxima. $2+2+1$

V(5th Sm.)-Physics-H/DSE-A-1(b)/CBCS
(d) Draw the schematic diagram of a three level laser. Indicate the non-radiative transitions. Identify the metastable state. Write down the rate equations for different levels explaining each terms. $1+1+1+2$
(e) Explain with suitable energy diagram how does population inversion take place in $\mathrm{He}-\mathrm{Ne}$ Laser. Also discuss about the Lasing action in this Laser. $3+2$
3. (a) For a step index fibre with core diameter d show that the distance between two successive reflections is given by $L=d \sqrt{\left(\frac{\mu_{1}}{\mu_{0} \sin \theta_{i}}\right)^{2}-1}$.
where μ_{1} and μ_{0} are the refractive indices of core and surrounding medium respectively and θ_{i} is the angle of incidence.
(b) A fibre has a diameter of 6 mm and refractive index of its core is 1.47 and that for cladding is 1.43 . How many modes can propagate into the fibre if the wavelength of the source is 1.5 mm ?
(c) What will be the shape of the path for a ray within a graded index fibre and why?
4. (a) What are the fundamental modes of vibration of a CO_{2} molecule? Which mode/modes is/are responsible for lasing action?
(b) Draw a neat diagram to show the important Lasing transition. What are the corresponding wavelengths?
(c) Explain the role of N_{2} in this lasing action clearly mentioning the forbidden transitions. $(1+1)+(3+2)+3$
5. (a) Consider a laser system with mirror M_{1} and M_{2} having reflectivity R_{1} and R_{2} respectively. Mirrors are separated by a distance L.
(i) Write down the beam intensity at M_{2} if the intensity at M_{1} is I_{0} (given γ is the gain coefficient, α is the absorption coefficient of the laser medium).
(ii) Write down the beam intensity after reflection at M_{2}.
(iii) Write down the final intensity after completing one round trip.
(iv) Find out the amplification factor.
(v) Find out the condition for Lasing action and write down threshold gain.
(b) A injection laser has active cavity with losses of $30 / \mathrm{cm}$ and reflectivity of each mirror is 30%. Determine the laser gain coefficient (per cm unit) for the cavity when it has the length of 600 nm .

$$
1+1+2+1+3+2
$$

6. (a) Write down the one dimensional ray equation in $x-z$ plane in a medium for which $n=n(x)$
(b) In an inhomogeneous medium the refractive index is given by

$$
\begin{array}{rlr}
n^{2}(x) & =1+\frac{x}{L} \text { for } x>0 \\
& =1 \quad \text { for } x<0
\end{array}
$$

Write down the equation of a ray in the $x-z$ plane, passing through the point $(0,0,0)$ where its orientation w.r.t. x-axis is 45°.
(c) A glass clad Fibre is made with core glass of refractive index 1.5 and the cladding is doped to give a fractional index difference of 0.0005 .

Find
(i) the cladding index
(ii) numerical aperture
(iii) the external critical acceptance angle

$$
2+4+\left(1+1^{1 / 2}+1^{1 / 2} 2\right)
$$

7. (a) Consider the formation of a hologram with a point object and a plane reference wave. The point source is situated at a distance ' d ' from the photographic plate. Assume the reference wave falls normally on the plate. Calculate the intensity pattern $\mathrm{I}(x, y)$ at a point $\mathrm{P}(x, y, z=0)$ on the photographic plate.
(b) Write down $\mathrm{I}(x, y)$ when $d \gg(x, y)$.
(c) Suppose two coherent light wavetrains of unequal frequencies ω_{1} and ω_{2} are travelling in the non-linear dielectric material. The electric field in the material is given by $E=\left(E_{1} e^{i \omega_{1} t}+E_{2} e^{i \omega_{2} t}\right)+$ C.C.
Find the 2 nd order non-linear polarization and show that $P\left(\omega_{1}+\omega_{2}\right)=2 \chi^{(2)} E_{1} E_{2}$-where symbols have usual meaning.
8. (a) Discuss the operation of Nd:YAG laser with energy level diagram.
(b) What is Pockels Effect? Give a brief description of Pockels Cell.
