2021

PHYSICS — HONOURS

Paper : CC-12 Full Marks : 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

[Syllabus: 2019-20] (Statistical Physics)

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions:

 2×5

- (a) Show that for a canonical system : $\overline{\left(E-\overline{E}\right)^2}=kT^2C_V$, where C_V is the heat capacity at constant volume.
- (b) A particle of mass M is falling freely under gravity starting from rest. Draw its phase trajectory.
- (c) The entropy of black body radiation is given by $S = \frac{4}{3}\sigma V^{\frac{1}{4}}E^{\frac{3}{4}}$. Show that $PV = \frac{E}{3}$.
- (d) Consider a free particle inside a 1D box of length L. Calculate the number of microstates between the energy values E and E + dE.
- (e) Can $\frac{7}{3}$ Li form BEC? Give reason.
- (f) In how many ways can 5 identical balls be distributed among 3 identical boxes where each box can contain any number of balls?
- (g) Three containers, each of volume V, contain N particles of a classical, a Bose and a Fermi gas respectively at the same temperature T. State with reason which of the three containers will have the highest pressure.
- **2.** (a) What is the phase trajectory of a simple pendulum performing small oscillations? Show that the area enclosed by the trajectory is equal to the product of the total energy *E* and the time period *T* of the pendulum.
 - (b) Energy of a particle in 1D has the form $E = ap^2 + bq^5$ where p and q are the generalised momentum and coordinate and 'a' and 'b' are constants. Calculate the specific heat. (2+3)+5

- 3. A system of N classical particles in thermal equilibrium are distributed between two energy levels $\varepsilon = -\Delta/2$ and $\varepsilon = \Delta/2$.
 - (a) Write down the partition function for the system.
 - (b) Calculate the internal energy and entropy of the system.
 - (c) What is the specific heat of the system?
 - (d) Plot the specific heat and the entropy as a function of temperature and explain the high temperature and low temperature behaviour of the curves. 2+(1+1)+2+(2+2)
- **4.** (a) Find the variation of the specific heat C_V as a function of the temperature T for photon gas confined in 1D box.
 - (b) Given the energy of a system at temperature T and volume V is

$$E = aT^4V$$

where 'a' is a constant. Calculate (i) entropy (ii) Helmholtz free energy and (iii) Gibb's free energy. 5+(1+2+2)

- 5. For a classical ideal gas, derive the equation of state separately using (a) Canonical partition function and (b) Grand canonical partition function.

 5+5
- **6.** (a) Consider a photon gas confined in a volume V at temperature T. Show that the number of photons in this volume is proportional to T^3 .
 - (b) A photon gas is confined in volume V at temperature T. If the volume is increased adiabatically to 2V, determine the final temperature.
 - (c) Derive Wein's displacement law from Planck's law.

3+2+5

- 7. (a) Sketch the Fermi-Dirac distribution function and its derivative for T = 0 K and T > 0 K showing clearly the Fermi energy.
 - (b) Explain physically how the electronic specific heat of a metal behaves as a function of temperature.
 - (c) Deduce the pressure-volume relationship for a free electron gas obeying Fermi-Dirac statistics at 0K. Hence find an expression for the bulk modulus of the gas. 3+3+4

[Syllabus: 2018-19] (Solid State Physics)

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions:

 2×5

- (a) Sketch (210) and $(\overline{1}\overline{1}\overline{1})$ planes of a cubic system.
- (b) Determine the relationships between the lattice parameter 'a' and the atomic radius 'r' for monoatomic simple cubic, bcc and fcc structures.
- (c) Show that the reciprocal lattice to a simple cubic lattice is also a simple cubic lattice with lattice constant $2\pi/a$.
- (d) Explain hysterisis for ferroelectric materials.
- (e) Give an indirect evidence for the existence of phonons.
- (f) Consider two ferromagnets: one having a hysteresis curve with broad area and another with a narrow area. Which one can be used as electromagnet and why?
- (g) The atomic polarizability of neon is 4.3×10^{-41} Fm². If a neon atom is placed in an electric field of 5×10^6 V/m, calculate its dipole moment and the displacement of the centroids of positive and negative charges in it.
- 2. (a) In a cubic crystal, show that the distance between the adjacent planes with Miller indices *hkl* is given by

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$
.

- (b) Considering the scattering of X-rays from individual atoms in a crystal followed by their recombination to obtain directions of diffraction maxima derive the Laue equations.
- (c) An X-ray analysis of a crystal is made with monochromatic X-rays of wavelength 0.58 Å. Bragg's reflections are obtained at angles of (i) 6.45° (ii) 9.15° and (iii) 13°. Calculate the interplanar spacing of the crystal.
- **3.** (a) Discuss the failure of classical theory in explaining the observed temperature dependence of specific heat of a solid.
 - (b) Calculate the Debye frequency for aluminium from the following data: Density of atoms in Al = 6.02×10^{28} /m³, $v_I = 6374$ m/s, $v_r = 3111$ m/s.

V(5th Sm.)-Physics-H/CC-12/CBCS

(c) What are phonons? What is the physical significance of Debye temperature? Consider the expression for internal energy of a lattice in Debye model:

$$U = 9R \frac{T^4}{\Theta_D^3} \int_0^{x_D} \frac{x^3 dx}{e^x - 1}$$
 (where the symbols have their usual meanings)

Obtain an expression for the specific heat C_V at low temperature. What will happen to C_V at high temperature? 3+2+(1+2+2)

- 4. (a) Suppose a paramagnetic atom having permanent moment $\vec{\mu}$ with a given resultant quantum number \vec{J} is placed in a uniform magnetic field \vec{B} . Obtain an expression of the magnetization as a function of \vec{B} and temperature T. Hence, obtain Curie's law in the appropriate limit.
 - (b) Show that the force exerted by a field gradient on a specimen is proportional to its paramagnetic susceptibility.
 - (c) Explain why diamagnetism is an inherent property of an atom. (4+2)+3+1
- 5. (a) The dispersion relation of electrons in a 3d lattice is given by

$$\varepsilon(k) = \alpha \cos k_x a + \beta \cos k_y a + \gamma \cos k_z a$$

where a is the lattice constant and α , β , γ are constants. Find the effective mass tensor at the corner of the first Brillouin zone $\left(\frac{\pi}{a}, \frac{\pi}{a}, \frac{\pi}{a}\right)$.

- (b) Calculate the Hall coefficient R_H in a solid where both electrons and holes contribute to the Hall effect.
- (c) Schematically represent the variation of velocity, effective mass and acceleration as a function of wave vector.

 4+3+3
- **6.** (a) What do you mean by orientational polarization of molecules? Discuss the temperature dependence of such polarization.
 - (b) What do you mean by plasma frequency of free electrons? Using Lorentz model, derive Sellmeyer's equation for elastically bound electrons.
 - (c) What is the origin of piezoelectric effect? Mention one application of piezoelectric phenomenon. (1+2)+(1+3)+(2+1)
- 7. (a) What does the existence of energy gap in a superconductor imply?
 - (b) What is the relation between isotopic mass and transition temperature in a superconductor? Show the variation of energy gap with temperature.
 - (c) Write down the expression for penetration of external magnetic field inside a superconductor.
 - (d) In an experiment, a niobium (Nb) wire of radius 0.25 mm is immersed in liquid helium (T = 4.2 K) and required to carry a current of 300 A. It is given that $H_C(0) = 0.20 \text{T}$ and the critical transition temperature T_C of Nb is 9.3 K. Will the wire remain superconducting? 2+(2+2)+1+3