T(2nd Sm.)-Mathematics-H/CC-4/CBCS

2021

MATHEMATICS — HONOURS

Paper : CC-4

(Group Theory - I)

Full Marks : 65

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- Answer *all* the following multiple choice questions. Each question carries 2 marks, 1 mark for choosing correct option and 1 mark for justification.
 - (a) Which of the following groupoids is not semigroup?
 - (i) $(N,o), a \ ob = ab \ \forall \ a,b \in N$ (ii) $(Z,o), a \ ob = a+b+2 \ \forall \ a,b \in Z$
 - (iii) $(Z,o), a \circ b = a b, a, b \in Z$ (iv) $(Z,o), a \circ b = a + b + ab \forall a, b \in Z$

(b) Let H and K be two subgroups of a group (G, \bullet) such that o(H) = 13 and o(K) = 7, then o(HK) is

- (i) 1 (ii) 91
- (iii) 13 (iv) 7

(c) Let (G, \bullet) be a cyclic group of order 24. The total number of group homomorphism of G onto itself is

- (i) 7 (ii) 8
- (iii) 17 (iv) 24
- (d) In the permutation group $S_n (n \ge 5)$, if H is the smallest subgroup containing all the 3-cycles then which of the following is true?
 - (i) $H = S_n$ (ii) $H = A_n$ (iii) H is abelian (iv) o(H) = 2
- (e) Let $\phi: (R, +) \to (R \{0\}, 0)$ be a homomorphism and $\phi(2) = 3$. Then $\phi(-6)$ is

(i)
$$\frac{1}{3}$$
 (ii) $\frac{1}{27}$

(iii) -18 (iv) $\frac{1}{9}$

Please Turn Over

T(2nd Sm.)-Mathematics-H/CC-4/CBCS

- (f) Choose the wrong statement among the following :
 - (i) If in a group $(G, \bullet) (ab)^2 = b^2 a^2$ for all $a, b \in G$, then G is abelian.
 - (ii) If (G, \bullet) is a finite group, then there exists $N \in \mathbb{N}$ such that $a^N = e$, for all $a \in G$.
 - (iii) A group of five elements is always abelian.
 - (iv) If (G, \bullet) is a group of even order, then there exists an element $a \neq e$ such that $a^2 = e$.
- (g) If o(a) = n and k divides n, which of the following is always true?
 - (i) $o(a^{n/k}) = k$ (ii) $o(a^{n/k}) = n$
 - (iii) $o(a^{n/k}) = n/k$ (iv) $o(a^{n/k}) = k.n$
- (h) The value of (1 2 3 4) o (2 3 5 4 6) o (3 4 5 6) is
 - (i) $(6\ 1\ 2\ 4\ 3\ 5)$ (ii) $(6\ 5\ 3)(1\ 2\ 4)$
 - (iii) (1 2)(3 4 5 6) (iv) (3 4 5 6 1)
- (i) Show that f: (C, +) → (R, +) defined by f(a + ib) = a, for all a + ib ∈ C, is onto homomorphism. Then ker(f) is
 - (i) $\{0\}$ (ii) \mathbb{R} (iii) $i\mathbb{R} = \{ib : b \in \mathbb{R}\}$ (iv) \mathbb{C}
- (j) Let G = (ℤ, +), H = (24 ℤ, +). Then the order of 8 + 24 ℤ in G/H is
 (i) 8 (ii) 3
 - (iii) 16 (iv) 24

Unit - I

- 2. Answer *any two* questions :
 - (a) (i) Prove that the set of all odd integers forms a commutative group with respect to '*' defined by a*b = a + b − 1 ∀ a, b ∈ D
 - (ii) Prove or disprove : "If H and K are two subgroups of a group G then HK is also a subgroup of G ". 3+2
 - (b) (i) If S is a finite semigroup then show that there exists an element $a \in S$ such that $a^2 = a$.
 - (ii) Let G be a multiplicative group and let for $a, b \in G$, $a^4 = e$ and $ab = ba^2$ where e is the identity element of G. Prove that a = e. 3+2
 - (c) Give an example of a non-abelian group of order 2n. If a group (G, \bullet) has no non-trivial subgroups, show that G must be finite and of prime order. 2+3
 - (d) If H is a subgroup of (G, \bullet) , let $N(H) = \{a \in G : aHa^{-1} = H\}$. Prove that
 - (i) N(H) is a subgroup of G.
 - (ii) $H \subset N(H)$. 3+2

(T(2nd Sm.)-Mathematics-H/CC-4/CBCS

Unit - II

3. Answer *any four* questions :

- (a) (i) Show that the 8th roots of unity form a cyclic group. Find all generators of the group.
 - (ii) Give an example of an infinite group, every element of which is of finite order. 3+2
- (b) (i) Let G be the set of all permutations of the positive integers. Let H be the subset of elements of G that can be expressed as a product of a finite number of cycles. Prove that H is a subgroup of G.
 - (ii) Let α and β belongs to S_n . Prove that $\beta \alpha \beta^{-1}$ and α are both even or both odd. 3+2
- (c) (i) If H and K be two subgroups of a group G, then prove that for any $a, b \in G$, either $Ha \cap Kb = \phi$ or $Ha \cap Kb = (H \cap K)c$ for some $c \in G$.

(ii) Express the permutation
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 8 & 5 & 6 & 4 & 7 & 1 \end{pmatrix}$$
 on S_8 as a product of transpositions.

3+2

2+3

- (d) (i) Let (G, \bullet) be an infinite cyclic group generated by a. Prove that a and a^{-1} are the only generators of the group G.
 - (ii) Let G be a cyclic group of order 30 generated by a. Find the order of cyclic group generated by a^{18} . 3+2
- (e) Define cosets of a subgroup *H* in a group (*G*, •). The set $H = \{\overline{0}, \overline{3}, \overline{6}, \overline{9}\}$ is a subgroup of \mathbb{Z}_{12} . Find all cosets of *H*.
- (f) Prove that every non-commutative group (G, \bullet) of order 10 must have a subgroup H of order 5. Also, prove that $x^2 \in H$ for all $x \in G$.
- (g) (i) Let $a(\neq 0)$, $b \in \mathbb{R}$. Define a mapping $f_{a,b} : \mathbb{R} \to \mathbb{R}$ by $f_{a,b}(x) = ax + b$ for all $x \in \mathbb{R}$. Prove that $f_{a,b}$ is a permutation on \mathbb{R} .
 - (ii) Find the largest order of an element in the group S_{12} .

Unit - III

- 4. Answer any three questions :
 - (a) (i) Let H be a normal subgroup of a group (G, \bullet) and [G:H] = m. Prove that $a^m \in H$ for all $a \in G$.
 - (ii) If H is a subgroup of (G, \bullet) such that $x^2 \in H$ for every $x \in G$, then prove that H is a normal subgroup of G. 3+2
 - (b) Let (G, \bullet) be a group and the mapping $f: G \to G$ be defined by $f(g) = g^{-1}, g \in G$. Show that f is an isomorphim if and only if G is abelian. 5

Please Turn Over

- (c) (i) Prove that the quotient of an abelian group is abelian. Can the quotient of a non-abelian group be abelian? Justify.
 - (ii) Consider the group $G = \{1, -1, i, -i\}$ with respect to usual multiplication of complex numbers and the group $H = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ with respect to usual multiplication defined on \mathbb{Z}_8 . Is the group *G* isomorphic to the group *H*? Justify your answer. (2+1)+2
- (d) Define normal subgroups of a group. Prove that a group of prime order is simple. 1+4
- (e) Let $GL_n(\mathbb{R})$ be the general linear group over \mathbb{R} and $SL_n(\mathbb{R})$ be the special linear group over \mathbb{R} . Prove that $GL_n(\mathbb{R})/SL_n(\mathbb{R}) \cong \mathbb{R}^*$, where there \mathbb{R}^* is the group under usual multiplication of real numbers.