2021

PHYSICS — HONOURS

(2019-20 Syllabus)

Paper: CC-10

(Quantum Mechanics)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

as far as practicable.

Answer question no. 1 and any four from the rest.

1. Answer any five questions:

 2×5

- (a) How many lines of spots on the detecting screen will be produced if Stern-Gerlach experiment is performed with an atom of total angular momentum J?
- (b) The wave function of a particle of mass m in one-dimensional potential $V(x) = \frac{1}{2} m\omega^2 x^2$ has the

form $\psi(x) = Ae^{-\frac{\alpha x^2}{2}}$ in ground state, where A is a normalization constant and α is a positive constant. Making use of Schrödinger equation, find the ground state energy E of the particle.

(c) In the ground state of harmonic oscillator, calculate the probability of finding the particle outside the classically allowed region.

[You may use the result $erf(1) = \frac{2}{\sqrt{\pi}} \int_{0}^{1} e^{-x^2} dx = 0.8427$]

- (d) 'A free particle does not has definite energy'- Explain.
- (e) Evaluate $\left[\hat{L}_x^2 + \hat{L}_y^2, \hat{L}_z^2\right]$ where \hat{L}_x , \hat{L}_y and \hat{L}_z are components or orbital angular momentum operator.
- (f) If Parity operator \hat{P} satisfies $\hat{P} \Psi (x) = \Psi (-x)$, show that \hat{P} has only two eigenvalues 1 and -1. Find the eigenfunction for each of them.
- (g) Show that for all the inert gases term symbol is ${}^{1}S_{0}$.

Please Turn Over

$\frac{T(4th Sm.)-Physics-H/CC-10/CBCS}{(2019-20 Syllabus)} \tag{2}$

2. A particle of mass m is confined in a potential:

$$V(x) = \begin{cases} \frac{1}{2} m\omega^2 x^2 & \text{for } x > 0\\ \infty & \text{for } x \le 0 \end{cases}$$

(a) Using the energy eigenfunction $\Psi_n(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2^n n!}} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) e^{-\frac{m\omega}{2\hbar}x^2}$ and energy

eigenvalue $E_n = \left(n + \frac{1}{2}\right) \hbar \omega$ of Harmonic oscillator, find the energy eigenfunction and energy eigenvalue of the particle in the n^{th} stationary state.

- (b) Draw the ground state and first exited state wave functions along with the potential of the particle.
- (c) The particle in the above potential starts out in the state $\Psi(x) = -\frac{1}{\sqrt{5}}\Psi_0 + \frac{2}{\sqrt{5}}\Psi_1$, where Ψ_0 and Ψ_1 are ground state and first excited state of the particle respectively. Calculate the energy expectation value.
- 3. At time t = 0, a free particle is described by the following Gaussian wave function

$$\psi(x) = Ae^{-\frac{x^2}{2\sigma_0^2} + \frac{i}{\hbar}p_0x},$$

where A is a constant and other symbols have their usual meanings.

- (a) Normalize the wave function.
- (b) Find the wave function in momentum space.
- (c) Hence calculate and $< p^2 >$ in momentum space.

2+4+4

4. The normalized wave function for the ground state of hydrogen like atom is

$$\psi_{100} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{\frac{3}{2}} e^{-\frac{Zr}{a_0}}$$
, where a_0 is the Bohr radius.

- (a) Calculate the most probable distance.
- (b) Calculate the average distance of the electron from the nucleus.
- (c) Sketch the radial probability distribution function $P_{100}(r)$.
- (d) Calculate the average value of modulus of the Coulomb force acting on the electron. 3+2+2+3

- 5. (a) Consider $\Psi(\theta, \phi) = A[Y_{1,-1} + Y_{1,1}]$ where $Y_{l,m}$ are spherical harmonics. Find
 - (i) A
 - (ii) Is Ψ (θ , ϕ) eigenfunction of \hat{L}^2 ?
 - (iii) Is Ψ (θ , ϕ) eigenfunction of \hat{L}_z ?
 - (iv) Calculate $< L^2 >$ and $< L_z >$ for the state Ψ (θ , ϕ).
 - (b) $\alpha_{+} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ and $\alpha_{-} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{vmatrix} \frac{1}{2} & \left(-\frac{1}{2} \right) \end{pmatrix}$ are two eigenstates of a spin $\frac{1}{2}$ particle. The

x component of the spin operator S is given by $S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

- (i) Find the normalizes eigenstates and eigenvalues of S_{ν} .
- (ii) Express any general state of the spin $\frac{1}{2}$ particle $\alpha = \begin{pmatrix} a \\ b \end{pmatrix}$ as a linear combination of the eigenstates of S_x .

 $(1+\frac{1}{2}+\frac{1}{2}+1\frac{1}{2}+1\frac{1}{2})+(3+2)$

- 6. (a) $|\alpha\rangle$ and $|\beta\rangle$ are two states of a spin $\frac{1}{2}$ particle. Obtain the normalized triplet and singlet spin states formed by two spin $\frac{1}{2}$ particles.
 - (b) Consider the finite square well potential $V(x) = \begin{cases} -V_0 & \text{for } -a < x < a \\ 0 & \text{for } |x| > a \end{cases}$

where V_0 is a positive constant and 2a is the width of the potential well.

- (i) Derive the transcendental equation determining the discrete energy eigenvalues for symmetric wave functions (bound states).
- (ii) Find the energy eigenvalues for the symmetric wave functions when the potential well is deep and wide. 4+(4+2)

$\frac{T(4th Sm.)-Physics-H/CC-10/CBCS)}{(2019-20 Syllabus)} \tag{4}$

7. (a) Consider the Schrödinger equation:

$$\left(-\frac{\hbar^2}{2m_1} \nabla_1^2 - \frac{\hbar^2}{2m_2} \nabla_2^2 + V\right) \Psi = E\Psi$$

for a two-particle system where potential V is a function of $\vec{r} = \vec{r_1} - \vec{r_2}$. Show that above equation can be written as

$$\left[-\frac{\hbar^2}{2M} \nabla_R^2 - \frac{\hbar^2}{2\mu} \nabla_r^2 + V(\vec{r}) \right] \Psi = E \Psi,$$

where
$$M = m_1 + m_2$$
; $\vec{R} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{M}$, $\vec{r} = \vec{r}_1 - \vec{r}_2$ and $\mu = \frac{m_1 m_2}{m_1 + m_2}$.

- (b) Consider the spin-orbit correction term $H_{SO}^1 = K \ \vec{S} \cdot \vec{L}$ where K is a constant. Show that H_{SO}^1 commutes with L^2 , S^2 , J^2 and J_z .
- (c) Find the Lande g-factor for ${}^{2}P_{3/2}$. 4+4+2

2021

PHYSICS — HONOURS

(2018-2019 Syllabus)

Paper: CC-10

(Analog System and Applications)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions:

 2×5

- (a) Compare between the performances of a C-filter and a π -filter.
- (b) Explain the working principle of an LED.
- (c) What is drift velocity? How is it related to mobility?
- (d) What are the advantages of negative feedback?
- (e) What is the pinch-off effect in a JFET?
- (f) Indicate the lower and upper cut-off frequency on the frequency response curve of a CE-amplifier.
- (g) What is slew rate of an OPAMP?
- 2. (a) If the bandgap of silicon be 1.1 eV, upto what wavelength of light can it absorb?
 - (b) What is the load line of an active device? How can you specify the endpoints of the load line in a CE transistor circuit?
 - (c) What are hybrid parameters of a transistor? Why are they named so?
 - (d) What is an emitter follower?

2+(1+2)+(2+1)+2

3. (a) Find the lower cut-off frequency of a self-biased circuit (with voltage devider) of CE-amplifier given below:

Please Turn Over

(2)

- (b) Explain the current amplification factors α and β for CB and CE configuration respectively. Obtain the relation between them.
- (c) Calculate I_E in a transistor for which β = 50 and I_B = 20 μA .

4+(2+2)+2

- 4. (a) Explain how a JFET can be used as a voltage controlled current source.
 - (b) Draw the common source drain characteristics of a JFET and explain the behaviour in different regions.
 - (c) Show that higher gain of an R-C coupled amplifier offers a reduced bandwidth. 3+(2+3)+2
- **5.** (a) What is meant by frequency stability of an oscillator? Draw the circuit diagram of a Hartley oscillator. Find the frequency of oscillation and condition for oscillation.
 - (b) Write down Barkhausen criterion for oscillation, explaining the terms.

(2+2+4)+2

- **6.** (a) The CMRR of a differential amplifier using OPAMP is 100 dB. The output voltage is 2V for a differential input of 200 μV. Determine the common mode gain.
 - (b) Explain with circuit diagram the action of a zero crossing detector using OPAMP.
 - (c) Consider the OPAMP integrator with $R = 100 \text{ k}\Omega$, $C = 0.01 \mu\text{F}$ operated with 250 Hz input voltage. Find the expression for output wave form (V_0) .

Input wave form

For the above mentioned input square wave form, draw the output wave form.

2+4+(2+2)

- 7. (a) What is self bias? Draw the circuit diagram showing the self bias of an *n-p-n* transistor in the CE configuration.
 - (b) Explain physically how the self biasing resistor improves the stability. Explain the functions of the bypass and the coupling capacitors.
 - (c) What are the advantages of *h*-parameters?

(1+2)+(2+3)+2