2021

MATHEMATICS - HONOURS

Paper : CC-9

(Partial Differential Equation and Multivariate Calculus-II)

Full Marks : 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.
All symbols have their usual meaning.
Group - A
(Marks : 20)

1. Answer all questions with proper explanation/justification (one mark for correct answer and one mark for justification) :
(a) Show that $u(x, y)=\exp \left(-\frac{x}{b}\right) f(a x-b y)$, where a, b are arbitrary constants and f is an arbitrary function, satisfies
(i) $b u_{x}+a u_{y}+u=0$
(ii) $b u_{x}-a u_{y}-u=0$
(iii) $b u_{y}+a u_{x}+u=0$
(iv) none of these.
(b) If $u_{x}=v_{y}$ and $v_{x}=-u_{y}$, then u and v satisfy one of the following relations:
(i) $\nabla^{2} u \neq 0, \nabla^{2} v \neq 0$
(ii) $\nabla^{2} u=0, \nabla^{2} v \neq 0$
(iii) $\nabla^{2} u \neq 0, \nabla^{2} v=0$
(iv) $\nabla^{2} u=0, \nabla^{2} v=0$.
(c) Nature of the partial differential equation $u_{x x}-\sqrt{y} u_{x y}+x u_{y y}=\cos \left(x^{2}-2 y\right), y \geq 0$ is
(i) hyperbolic if $y>4 x$; parabolic if $y=4 x$; elliptic if $y<4 x$
(ii) elliptic if $y>4 x$; parabolic if $y=4 x$; hyperbolic if $y<4 x$
(iii) hyperbolic if $y=4 x$; parabolic if $y<4 x$; elliptic if $y>4 x$
(iv) none of these.
(d) Characteristic curves of the partial differential equation $u_{x x}+x^{2} u_{y y}=0$, for $x \neq 0$ is given by
(i) $2 y-i x^{2}=c_{1}, 2 y+i x^{2}=c_{2}$
(ii) $4 y-i x^{2}=c_{1}, 4 y+i x^{2}=c_{2}$
(iii) $3 y-i x^{2}=c_{1}, 3 y+i x^{2}=c_{2}$
(iv) none of these.
(e) Which one of the following is a nonlinear partial differential equation?
(i) $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=n z$
(ii) $x^{2} \frac{\partial z}{\partial x}+y^{2} \frac{\partial z}{\partial y}=n z$
(iii) $\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=1$
(iv) none of these.
(f) Value of the integral $\iint \cos (x+y) d x d y$ over the domain $x=0, y=\pi, y=x$ is
(i) 2
(ii) -2
(iii) 1
(iv) none of these.
(g) Value of the integral $\int \frac{d s}{x-y}$ along the line $2 y=x-4$ between the points $(0,-2)$ and $(4,0)$ is
(i) $\sqrt{5} \log 2$
(ii) $\frac{\sqrt{5}}{2} \log 2$
(iii) $2 \sqrt{5} \log 2$
(iv) none of these.
(h) Value of the integral $\iiint x y z d x d y d z$ over $R:[0,1 ; 0,1 ; 0,1]$ is
(i) $\frac{1}{2}$
(ii) $\frac{1}{4}$
(iii) $\frac{1}{8}$
(iv) none of these.
(i) If the order of integration in $\int_{0}^{1} d y \int_{0}^{\sqrt{y}} f(x, y) d x$ is reversed, then it will take the form
(i) $\int_{0}^{1} d x \int_{x^{2}}^{1} f(x, y) d y$
(ii) $\int_{0}^{1} d x \int_{x}^{1} f(x, y) d y$
(iii) $\int_{0}^{1} d x \int_{\sqrt{x}}^{1} f(x, y) d y$
(iv) none of these.
(j) A particle, acted on by constant forces $(5 \vec{i}+2 \vec{j}+\vec{k})$ and $(2 \vec{i}-\vec{j}-3 \vec{k})$, is displaced from the origin to the point $(4 \vec{i}+\vec{j}-3 \vec{k})$. The total work done by the forces is
(i) 33 units
(ii) 35 units
(iii) 37 units
(iv) none of these.

Group - B
 (Marks : 21)

Answer any three questions.

2. (a) Form the partial differential equation by eliminating the arbitrary function f from the equation

$$
z=x f\left(\frac{y}{x}\right)
$$

(b) Find the solution of the equation $(y-u) u_{x}+(u-x) u_{y}=x-y$ with the Cauchy data $u=0$ on $x y=1$.
3. (a) Apply Charpit's method to find the complete integral of the partial differential equation $p x+q y=p q$.
(b) Solve the partial differential equation $u_{x}^{2}+u_{y}^{2}=u$ using $u(x, y)=f(x)+g(y)$.
4. Reduce the second order partial differential equation $y u_{x x}+(x+y) u_{x y}+x u_{y y}=0$ to a canonical form and hence solve it.
5. A stretched string of finite length L is fixed at its ends and is subjected to an initial displacement $u(x, 0)=u_{0} \sin \left(\frac{\pi x}{L}\right)$. The string is released from this position with zero initial velocity. Find the resultant motion of the string.
6. Solve the following initial-boundary value problem :

$$
\begin{aligned}
& u_{t}=4 u_{x x}, 0<x<1, t>0 \\
& u(x, 0)=x^{2}(1-x), 0 \leq x \leq 1 \\
& u(0, t)=0, u(1, t)=0, t \geq 0
\end{aligned}
$$

by variable separation method.

Answer any four questions.
7. Using differentiation under the sign of integration, prove that

$$
\begin{equation*}
\int_{0}^{\pi / 2} \log \left(a \cos ^{2} \theta+b \sin ^{2} \theta\right) d \theta=\pi \log \left[\frac{1}{2}(\sqrt{a}+\sqrt{b})\right], a, b>0 . \tag{6}
\end{equation*}
$$

8. By changing the order of integration, prove that $\int_{0}^{1} d x \int_{x}^{\frac{1}{x}} \frac{y d y}{(1+x y)^{2}\left(1+y^{2}\right)}=\frac{(\pi-1)}{4}$.
9. Evaluate the integral $\iint_{E} \sqrt{4 a^{2}-x^{2}-y^{2}} d x d y$, where E is the region bounded by the circle

$$
\begin{equation*}
x^{2}+y^{2}=2 a x . \tag{6}
\end{equation*}
$$

10. Find the value of the integral $\int_{V} \frac{d x d y d z}{(x+y+z+1)^{4}}$, where V is the volume enclosed within the tetrahedron formed by the planes $x+y+z=1$ and $x=0, y=0, z=0$.
11. (a) If $\frac{1}{2} \oint_{C}(x d y-y d x)$ represents the area bounded by the closed curve C, then find the area bounded by the curve $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$.
(b) Show that the vector field given by $(y+\sin z) \vec{i}+x \vec{j}+(x \cos z) \vec{k}$ is conservative. Find a scalar potential of this field.
12. (a) Use Stoke's theorem to find the line integral $\int_{C}\left(x^{2} y^{3} d x+d y+z d z\right)$, where C is the circle

$$
x^{2}+y^{2}=a^{2}, z=0
$$

(b) Apply Divergence theorem to evaluate $\iint_{S} \vec{F} \cdot \vec{n} d S$ where $\vec{F}=\left(x^{2}-y z\right) \vec{i}+\left(y^{2}-z x\right) \vec{j}+\left(z^{2}-x y\right) \vec{k}$ and S is the surface of the rectangular parallelopiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$. Here \vec{n} is the unit outward drawn normal to the surface S.
13. Show that the volume common to the cylinders $x^{2}+y^{2}=a^{2}$ and $x^{2}+z^{2}=a^{2}$ is $\frac{16 a^{3}}{3}$.

