PHYSICS - HONOURS

(Syllabus : 2019-2020)

Paper : CC-8

(Mathematical Physics III)

Full Marks : 50

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions:
(a) Find the principal value of i^{i}, where $i=\sqrt{-1}$.
(b) Find the residue of $f(z)=z e^{\frac{1}{z^{2}}}$ at its pole.
(c) Consider three functions: (i) $f_{1}(z)=|z|^{3}$, (ii) $f_{2}(z)=\sinh z$, (iii) $f_{3}(z)=(1+z *)^{10}$, where $z^{*}=x-i y$. State with reason which of the following functions is / are not analytic.
(d) Find the equation of motion for the Lagrangian $L=\frac{1}{2} m \dot{q}^{2}-\frac{1}{2} k q^{2}+2 q \dot{q}+3 q^{2} \dot{q}$.
(e) Show that the conjugate momentum corresponding to a cyclic variable in the Lagrangian is conserved.
(f) Lifetime of muon in its rest frame is $2 \times 10^{-6} \mathrm{~s}$. How, then, a muon produced at a height of 4 km can reach the surface of the earth?
(g) Consider two events A and B in an inertial frame S with four coordinates $(c t, x, y, z)=(13,12,5,0)$ and $(0,0,3,4)$ respectively. In another inertial frame S^{\prime} moving with a velocity $\frac{c}{2}$ along the common x-axis. What should be the separation $d s^{2}$ between A and B?
[Use the metric convention ($1,-1,-1,-1$)]
2. (a) Find the Laurent series of

$$
f(z)=\frac{1}{z(z-2)^{3}}
$$

about the singularities $z=0$ and $z=2$ separately. From the series, verify that $z=0$ is a pole of order 1 and $z=2$ is a pole of order 3 . Also find the residue of $f(z)$ at each pole.
(b) Given real part of the analytic function $u=e^{-x}(x \sin y-y \cos y)$, find $f(z)$.
(2019-2020 Syllabus)
3. (a) Evaluate $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+2 x+2}$
(b) Calculate $\oint_{|z|=1} \frac{\sin z}{\left(z^{2}-\frac{\pi^{2}}{16}\right)} d z$
(c) Find the nature of singularity of $f(z)=\frac{\sinh z}{z^{4}}$.
4. (a) A particle is constrained to move on the surface of a sphere. What are the equations of constraint for this system?
(b) Consider a single loop of the cycloid having a fixed value of a as shown in the figure. A car released from rest at any point P_{0} anywhere on the track between O and the lowest point P, that is, P_{0} has a parameter $0<\theta_{0}<\pi$. Take

$$
\begin{aligned}
& x=a(\theta-\sin \theta) \\
& y=a(1-\cos \theta)
\end{aligned}
$$

Show that the time T for the car to slide from P_{0} to P is given by the integral

$$
T\left(P_{0} \rightarrow P\right)=\sqrt{\frac{a}{g}} \int_{\theta_{0}}^{\pi} \sqrt{\frac{1-\cos \theta}{\cos \theta_{0}-\cos \theta}} d \theta
$$

Prove that this time T is equal to $\pi \sqrt{a / g}$, which is independent of the position P_{0}. [Hint: You might need to substitute $\theta=\pi-2 \alpha$ to calculate the integral easily.]
5. (a) A particle of mass m is moving on the inner surface of a paraboloid of revolution $x^{2}+y^{2}=4 z$ under gravity along z direction. Construct the Lagrangian and hence find the equations of motion.
(b) Is there any cyclic coordinate in part (a)? Find the conserved momentum.
(c) $L(x, \dot{x})=\frac{1}{2} \dot{x}^{2}-\frac{1}{2} \omega^{2} x^{2}-\lambda x^{3}+\mu x \dot{x}^{2}$ where ω, λ, μ are constants.
(i) Find conjugate momentum
(ii) Find the Hamiltonian
(iii) Is energy conserved in this system?
6. (a) A rod of proper length L_{0} is at rest in an inertial frame S^{\prime}. The rod is inclined at an angle θ^{\prime} with respect to the x^{\prime}-axis of S^{\prime}. If S^{\prime} moves with a uniform velocity v relative to another inertial frame S along the common x-axis, show that
(i) the length of the rod in S-frame is

$$
L=L_{0}\left(\frac{\cos ^{2} \theta^{\prime}}{\gamma^{2}}+\sin ^{2} \theta^{\prime}\right)^{\frac{1}{2}}
$$

(ii) the angle of inclination of the rod in S-frame is
$\theta=\tan ^{-1}\left(\gamma \tan \theta^{\prime}\right)$,
where $\gamma=\left(1-v^{2} / c^{2}\right)^{-1 / 2}$.
(b) A meson of rest mass π comes to rest and disintegrates into a muon of rest mass μ and a neutrino of zero rest mass. Show that the kinetic energy of the muon (i.e. without the rest mass energy) is

$$
\begin{equation*}
T=\frac{(\pi-\mu)^{2} c^{2}}{2 \pi} \tag{2+2}
\end{equation*}
$$

7. Consider 4-momentum $p^{\mu}=\left(\frac{E}{C}, \vec{p}\right)$ is an inertial frame S.
(a) Write down the, Lorentz transformation equations of p^{μ} in an inertial frame S^{\prime}, moving along common x-axis w.r.t. S.
(b) Show that for any 4 -vector A^{μ} is invariant under Lorentz transformation.
(c) Find $P^{\mu} P_{\mu}$ in the rest frame of the particle.
(d) Show that 4-force and 4-momentum are orthogonal to each other.

PHYSICS - HONOURS

(Syllabus : 2018-2019)

Paper : CC-8

(Mathematical Physics III)

Full Marks : 50

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions:
(a) Find the principal value of i^{i}, where $i=\sqrt{-1}$.
(b) Find the residue of $f(z)=z e^{\frac{1}{z^{2}}}$ at its pole.
(c) Consider three functions: (i) $f_{1}(z)=|z|^{3}$, (ii) $f_{2}(z)=\operatorname{sinhz}$, (iii) $f_{3}(z)=\left(1+z^{*}\right)^{10}$, where $z^{*}=x-i y$. State with reason which of the following functions is / are not analytic.
(d) Give reason why the fourier transform of e^{x} does not exist.
(e) Two unbiased dice are rolled. Find the probability that the sum is equal to 5 .
(f) Lifetime of muon in its rest frame is $2 \times 10^{-6} \mathrm{~s}$. How, then, a muon produced at a height of 4 km can reach the surface of the earth?
(g) Consider two events A and B in an inertial frame S with four coordinates $(c t, x, y, z)=(13,12,5,0)$ and $(0,0,3,4)$ respectively. In another inertial frame S^{\prime} moving with a velocity $\frac{c}{2}$ along the common x-axis. What should be the separation $d s^{2}$ between A and B?
[Use the metric convention ($1,-1,-1,-1$)]
2. (a) Find the Laurent series of

$$
f(z)=\frac{1}{z(z-2)^{3}}
$$

about the singularities $z=0$ and $z=2$ separately. From the series, verify that $z=0$ is a pole of order 1 and $z=2$ is a pole of order 3. Also find the residue of $f(z)$ at each pole.
(b) Given real part of the analytic function $u=e^{-x}(x \sin y-y \cos y)$, find $f(z)$.
3. (a) Evaluate $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+2 x+2}$
(b) Calculate $\oint_{|z|=1} \frac{\sin z}{\left(z^{2}-\frac{\pi^{2}}{16}\right)} d z$
(c) Find the nature of singularity of $f(z)=\frac{\sinh z}{z^{4}}$.
4. (a) Find the exponential Fourier transform of $e^{-|x|}$ and hence find the value of the integral

$$
\int_{0}^{\infty} \frac{\cos \alpha x}{\alpha^{2}+1} d \alpha
$$

(b) Using Fourier transform, solve the equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad \begin{aligned}
& 0<x<\infty, t>0 \\
& (k \text { is constant })
\end{aligned}
$$

subject to conditions
(i) $u(0, t)=0 \quad t>0$
(ii) $u(x, 0)=e^{-x} \quad x>0$
(iii) u and $\frac{\partial u}{\partial t}$ both tend to zero as $x \rightarrow \pm \infty$.
5. (a) The standard deviation is defined as

$$
\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\langle x\rangle\right)^{2}}
$$

where x_{i} are the values of some random variable x and \rangle denotes the mean value. Show that

$$
\sigma^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2} .
$$

Suppose from a measurement we get $x_{1}=4, x_{2}=0, x_{3}=-1, x_{4}=2, x_{5}=5$. Calculate its standard deviation.
(b) The Gaussian (normal) distribution is defined by the probability density

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{[x-\mu]^{2}}{2 \sigma^{2}}\right),-\infty<x<+\infty
$$

(i) Show that it is properly normalized.
(ii) Show that the mean and variance of this distribution are μ and σ, respectively.
(iii) Roughly plot the distribution with $\mu=0$ and $\sigma^{2}=0.1,1.0,10$ in a same figure.

$$
\left(1^{1 / 2}+1^{1 / 2}\right)+(2+3+2)
$$

6. (a) A rod of proper length L_{0} is at rest in an inertial frame S^{\prime}. The rod is inclined at an angle θ^{\prime} with respect to the x^{\prime}-axis of S^{\prime}. If S^{\prime} moves with a uniform velocity v relative to another inertial frame S along the common x-axis, show that
(i) the length of the rod in S-frame is

$$
L=L_{0}\left(\frac{\cos ^{2} \theta^{\prime}}{\gamma^{2}}+\sin ^{2} \theta^{\prime}\right)^{\frac{1}{2}}
$$

(ii) the angle of inclination of the rod in S-frame is

$$
\theta=\tan ^{-1}\left(\gamma \tan \theta^{\prime}\right)
$$

$$
\text { where } \gamma=\left(1-v^{2} / c^{2}\right)^{-1 / 2}
$$

(b) A meson of rest mass π comes to rest and disintegrates into a muon of rest mass μ and a neutrino of zero rest mass. Show that the kinetic energy of the muon (i.e. without the rest mass energy) is

$$
\begin{equation*}
T=\frac{(\pi-\mu)^{2} c^{2}}{2 \pi} \tag{2+2}
\end{equation*}
$$

7. Consider 4-momentum $p^{\mu}=\left(\frac{E}{C}, \vec{p}\right)$ is an inertial frame S.
(a) Write down the, Lorentz transformation equations of p^{μ} in an inertial frame S^{\prime}, moving along common x-axis w.r.t. S.
(b) Show that for any 4-vector A^{μ} is invariant under Lorentz transformation.
(c) Find $P^{\mu} P_{\mu}$ in the rest frame of the particle.
(d) Show that 4-force and 4-momentum are orthogonal to each other.
