T(6th Sm.)-Mathematics-H/[DSE-B(2)-2]/CBCS

2021

MATHEMATICS — HONOURS

Paper : DSE-B(2)-2

(Astronomy and Space Science)

Full Marks : 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations have usual meanings.

Group - A

- Answer all the following multiple choice questions. For each question 1 mark for choosing correct option and 1 mark for justification. 2×10
 - (a) A telescope observing in space at a wavelength of 800 nm has an aperture with a diameter of 5 m. What is its angular resolution?
 - (i) 1.95×10^{-7} arcsec (ii) 4.03×10^{-2} arcsec
 - (iii) 1.95×10^{-1} arcsec (iv) 1.6 arcsec.
 - (b) A star of magnitude +4 lies at a distance of 100 pc. Then the absolute magnitude of the star is

- (iii) + 1.49 (iv) 1.0.
- (c) The redshift of a nearby galaxy is 0.01. If the Hubble constant is 73 km s⁻¹ Mpc⁻¹, then the distance of the galaxy in Mpc is
 - (i) 7.3 Mpc (ii) 21.9 Mpc
 - (iii) 41.1 Mpc (iv) 730 Mpc.
- (d) The microwave background radiation has a spectrum which peaks at a wavelength of 1.1 mm and is identical in shape to that of a black body of temperature 2.7 K. At what wavelength will the spectrum of the star Sirius A (with temperature 9940 K) peak?
 - (i) 9036 nm (ii) 335 nm
 - (iii) 299 nm (iv) 34 nm.
- (e) The sun will spend 1.1×10^{10} yr on the main sequence. Given that the main sequence stars obey a mass luminosity relationship of the form $L \propto M^{3.5}$. What is the lifetime of a $3M_{\odot}$ star? (M_{\odot} represents solar mass)
 - (i) 1.08×10^8 yr (ii) 9.05×10^8 yr
 - (iii) 2.13×10^8 yr (iv) 6.9×10^8 yr.

Please Turn Over

T(6th Sm.)-Mathematics-H/[DSE-B(2)-2]/CBCS

- (f) A star has a parallax of 0.01 arcseconds. Then the distance of the star will be
 - (i) 3.26 light years (ii) 326 light years
 - (iii) 100 light years (iv) 10 light years.
- (g) The distance of the Sun from the centre of our galaxy is 8.5 *kpc*. What will be the circular velocity of the Sun around the galactic centre?

[Take the constants A = 14.4 km s⁻¹ kpc⁻¹ and B = -12 km s⁻¹ kpc⁻¹]

- (i) 250 km s^{-1} (ii) 224.4 km s^{-1}
- (iii) 242.2 km s^{-1} (iv) 220.1 km s^{-1} .
- (h) Suppose we look at two distant galaxies : Galaxy 1 is twice as far away as Galaxy 2. In that case
 - (i) We are seeing Galaxy 1 as it looked at an earlier time in the history of the universe than Galaxy 2
 - (ii) We are seeing Galaxy 1 as it looked at a later time in the history of the universe than Galaxy 2
 - (iii) Galaxy 1 must be twice as big as Galaxy 2
 - (iv) Galaxy 2 must be twice as old as Galaxy 1.
- (i) The dimensions of the Reynold's number is
 - (i) $[M^2 L^3 T]$ (ii) $[M L^3 T]$
 - (iii) $[M^2L^2T^2]$ (iv) None of these.
- (j) The expansion of the universe will be halted if the mass density of the Universe be equal to the critical density ρ_c whose value is [Take $H = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$]
 - (i) 0.5×10^{-29} gm cm⁻³ (ii) 1×10^{-29} gm cm⁻³
 - (iii) 1.5×10^{-29} gm cm⁻³ (iv) 2×10^{-29} gm cm⁻³.

Group - B

- 2. Answer any one question :
 - (a) In connection with the spherical triangle, given the observer's latitude ' ϕ ', the declination ' δ ' and hour angle '*H*' of the heavenly body, calculate its zenith distance and azimuth. Also given the observer's latitude ' ϕ ', the star's zenith distance '*z*' and azimuth '*A*', calculate the star's declination and hour angle. 3+2
 - (b) Derive the fundamental formula of spherical trigonometry.

5×1

\overline{cs} (2)

(3)

Group - C

3. Answer *any one* question :

- (a) Discuss the different layers of Earth's atmosphere, indicating the major constituents and their interaction with electromagnetic radiation of different wavelengths. 5
- (b) What is f/a ratio of a telescope and what are its various advantages? Compare the brightness of images of the Moon produced by two telescopes one with f = 200 cm, a = 40 cm, and the other with f = 600 cm and a = 100 cm. 2+3

Group - D

4. Answer *any two* questions :

- (a) Define luminosity of a star. What is its relation with the effective temperature of a star? Derive the relationship between the luminosity and the absolute magnitude of a star. 1+1+3
- (b) What is stellar parallax? The apparent magnitude of a star is observed to be +3.3 and its parallax is 0".025. Find the absolute magnitude of the star. Compare the luminosity of this star with that of the Sun $(M_{v\odot} = +5.0)$. 1+2+2
- (c) The coronal spectrum shows emission lines of intense ionization— Explain. Comment on the sources of the coronal heating. 3+2
- (d) Discuss the solar neutrino puzzle and its possible solutions.

Group - E

- 5. Answer any one question :
 - (a) What are interstellar shock waves? Write down the equations which are appropriate for studying the propagation of a plane, normal and adiabatic shock. Deduce the Rankine-Hugoniot relation. 1+2+2
 - (b) Define Jeans wavelength, λ_j and Jeans Mass M_j . How are they related to the gravitational collapse of a static homogeneous cloud? Derive expressions for them. 1+1+3

Group - F

6. Answer *any two* questions :

- (a) Derive the formulae for the radial velocity, v_r and the tangential velocity, v_T in terms of the Oort's constants A and B.
- (b) Draw a diagram of the rotation curve of our galaxy and obtain a polynomial in the radial distance 'r' that fits the rotation curve fairly well. 2+3
- (c) Describe Hubble's morphological classification of galaxies. What are the principal observable features that form the basis for this classification? What features distinguish the sub-classes?

2+2+1

(d) Discuss the observations that suggest that a very large fraction of matter remains hidden in individual galaxies, galaxy clusters and in the universe. Also derive an estimate of the hidden matter. 3+2

5×1

T(6th Sm.)-Mathematics-H/[DSE-B(2)-2]/CBCS

5×1

5

 5×2

5×2

(4)

Group - G

7. Answer any two questions :

- (a) If ' m_0 ' and ' m_f ' are respectively the initial and final mass of a rocket, then prove that $m_f = m_0 \exp\left(-\frac{\Delta v}{c}\right)$, where Δv is the difference between the initial and final velocity of the rocket and 'c' is the velocity of exhaust. 5
- (b) As an approximate of Navier–Stokes equation of motion, derive the boundary layer equations for two-dimensional incompressible fluid flow past a flat plate.
- (c) What is Blasius boundary layer flow? Deduce the self-similar equation for this flow. 1+4
- (d) Write a note on the remarkable achievements of the Indian Space Research Organization (ISRO).

[Throughout the Paper take the Newton's Gravitational constant as $G = 6.67 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$].

5×2

5