T(6th Sm.)-Mathematics-H/[DSE-A(2)-1]/CBCS

2021

MATHEMATICS — HONOURS

Paper : DSE-A(2)-1

(Differential Geometry)

Full Marks : 65

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

[The symbols used have usual meanings]

- 1. Answer all the following multiple choice questions. For each question, 1 mark for choosing correct option and 1 mark for correct justification. 2×10
 - (a) The number of independent components of Christoffel's symbols are

(i)
$$n(n+1)$$
 (ii) $n(n-1)$

(iii)
$$\frac{n^2(n+1)}{2}$$
 (iv) 0.

(b) The value of g^{13} and g^{23} when the metric is given by

 $ds^{2} = 2(dx^{1})^{2} + 3(dx^{2})^{2} + 4(dx^{3})^{2} - 2dx^{2}dx^{3} - 4dx^{1}dx^{3} - 6dx^{1}dx^{2} \text{ in the Riemannian space } V_{3} \text{ are}$ (i) $-\frac{7}{19} \text{ and } -\frac{4}{19}$ (ii) $-\frac{7}{19} \text{ and } -\frac{2}{19}$ (iii) $-\frac{5}{19} \text{ and } -\frac{4}{19}$ (iv) $-\frac{9}{38} \text{ and } -\frac{4}{19}$.

(c) Let $ds^2 = -(dx^1)^2 - (dx^2)^2 - (dx^3)^2 + c^4(dx^4)^2$ be a metric defined on the Riemannian space V_4 . Then the angle between two contravariant vectors (1, 0, 0, 1/c) and (-1, -1, 0, 1/c) is

(i)
$$\theta = \cos^{-1}\left(\frac{c^2 + 1}{\sqrt{c^2 - 1}\sqrt{c^2 - 2}}\right)$$

(ii) $\theta = \cos^{-1}\left(\frac{c^2 - 1}{\sqrt{c^2 + 1}\sqrt{c^2 - 2}}\right)$
(iii) $\theta = \cos^{-1}\left(\frac{c^2 + 2}{\sqrt{c^2 - 1}\sqrt{c^2 - 2}}\right)$
(iv) $\theta = \cos^{-1}\left(\frac{c^2 + 1}{\sqrt{c^2 - 1}\sqrt{c^2 + 2}}\right)$.

Please Turn Over

T(6th Sm.)-Mathematics-H/[DSE-A(2)-1	(2)	
(d) The intrinsic derivative	of the fundamental tensor g_{ij} is	
(i) 1	(ii) 0	
(iii) – 1	(iv) 2.	
(e) The necessary and suff curvature to the torsion	icient condition for a given curve to be a helix is that the ratio of is always	the
(i) (+) <i>ve</i>	(ii) 0	
(iii) (-)ve	(iv) Constant.	
(f) If A_i is a covariant vector	or, then $\frac{\partial A_i}{\partial x^j}$ is	
(i) a (0, 2) tensor	(ii) a (2, 0) tensor	
(iii) an $(1, 1)$ tensor	(iv) not a tensor.	
(g) If g_{ij} is the fundamental	metric tensor of type (0, 2) in a Riemannian space V_n . If A^i and B^i are	two
non-null contravariant v	ectors such that $g_{ij}u^i u^j = g_{ij}v^i v^j$ where $u^i = A^i + B^i$ and $v^i = A^i - B^i$, 1	then
(i) A^i and B^i are paral	llel (ii) A^i and B^i are orthogonal	
(iii) A^i and B^i are equa	1 (iv) $g_{ij} A^i B^j = 1.$	
(h) If A_{ij} is a symmetric tens respect to x^k), then A_{ij} ,	sor such that $A_{ij,k} = A_{ik,j} (A_{ij,k}$ denotes the covariant derivatives of A_{ij} we have A_{ij} is	with
(i) a symmetric tenso	r of type $(0, 3)$ (ii) a symmetric tensor of type $(1, 2)$	
(iii) a symmetric tenso	r of type (2, 1) (iv) a skew-symmetric tensor of type (1, 2).	
(i) The surface is developa	ble if and only if	
(i) $LN - M^2 > 0$	(ii) $LN - M^2 < 0$	
(iii) $LN - M^2 = 0$	(iv) $LN - M^2$ is undefined.	
(j) A surface M is a minim	nal surface if	
(i) $k_1 k_2 = 0$	(ii) $k_1 + k_2 = 0$	
(iii) $K = 0$	(iv) $k_1 = k_2$.	
where k_1 , k_2 are princip	al curvatures and K is the Gaussian curvature.	

Unit - 1

Answer *any one* question. 5×1

2. Prove that the components of a tensor of type (0, 2) can be uniquely expressed as the sum of a symmetric tensor and a skew symmetric tensor of the same type.

T(6th Sm.)-Mathematics-H/[DSE-A(2)-1]/CBCS

3. Find the Christoffel symbols $\begin{pmatrix} 2 \\ 1 & 2 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 2 & 3 \end{pmatrix}$ in a 3-dimensional Riemannian space in which the line

element is given by $ds^2 = (dx^1)^2 + (x^1)^2 (dx^2)^2 + (x^1 \sin x^2)^2 (dx^3)^2$.

Unit - 2

Answer any four questions.

5×4

- 4. Prove that for an Einstein space V_n (n > 2) the scalar curvature is constant.
- 5. Find the curvature and torsion of the curve $\vec{r} = (\tan^{-1} s)\hat{i} + \frac{1}{\sqrt{2}}\log(s^2 + 1)\hat{j} + (s \tan^{-1} s)\hat{k}$.
- 6. Prove that necessary and sufficient condition for a vector field A to be parallel along the curve $\sigma : x^i = x^i(t), t_1 \le t \le t_2, i = 1, 2, 3$ is that

$$\frac{dA^{i}}{dt} + \begin{cases} i\\ \alpha\beta \end{cases} A^{\alpha} \frac{dx^{\beta}}{dt} = 0$$

where A^i , i = 1, 2, 3 are the components of A.

7. Find curvature and torsion at the point P of the curve σ , defined in cylindrical coordinates by equations $x^1 = a, x^2 = \theta(s), x^3 = 0$

where the line element is given by $ds^2 = (dx^1)^2 + (x^1)^2 (dx^2)^2 + (dx^3)^2$.

- 8. Prove that there are points on the cubic $x = at^3 + b$, $y = 3ct^2 + 3dt$, z = 3et + f such that the osculating plane passes through the origin and that the points lie on the plane 3cex + afy = 0.
- 9. If θ is the angle between the parametric curves, then show that $\cos\theta = \frac{a_{12}}{\sqrt{a_{11}a_{22}}}$.
- **10.** Using the relation $K = \frac{b}{a}$, where $a = \det(a_{\alpha\beta})$, $b = \det(b_{\alpha\beta})$, derive the relation $K = \det(b_{\beta\beta}^{\alpha})$.

Unit - 3

Answer any four questions.

- 11. Find the differential equations of the geodesic for the metric $ds^2 = (du)^2 + (\sin u)^2 (dv)^2$.
- 12. Find the Gaussian curvature for a surface with metric $ds^2 = a^2 \sin^2 u^1 (du^2)^2 + a^2 (du^1)^2$.

Please Turn Over

5×4

(3)

T(6th Sm.)-Mathematics-H/[DSE-A(2)-1]/CBCS (4)

- 13. Show that $x^1 = f_1(u^1)$, $x^2 = f_2(u^1)$, $x^3 = u^3$ is developable, where f_1 , f_2 are differentiable functions.
- 14. Prove that along a line of curvature on a surface $\frac{\delta\xi^r}{\delta s} + \kappa_p \frac{dx^r}{ds} = 0$. Is the converse true? Justify your answer.
- 15. Find torsion of a geodesic in terms of principal curvature.
- 16. Using the Gauss–Bonnet theorem, prove that the Gaussian curvature is identically zero on a surface S if at any point P on S there are two families of geodesic curves in neighbourhood of P intersecting at a constant angle.
- 17. Prove that geodesic curvatures of u^1 -curves and u^2 -curves are respectively

$$\sigma_1 = \sqrt{\frac{a}{(a_{11})^3}} \begin{cases} 2\\ 1 \end{cases} \text{ and } \sigma_2 = -\sqrt{\frac{a}{(a_{22})^3}} \begin{cases} 1\\ 2 \end{cases}$$

where $a = \det(a_{\alpha\beta})$.