2021

PHYSICS－GENERAL

Paper ：DSE－B－2

（Nuclear and Particle Physics）

Full Marks： 65
Candidates are required to give their answers in their own words as far as practicable．

প্রান্তলিখিত সংখ্যাগুলি পূণমান নির্দেশক।

বিভাগ－ক
১। যে－কোনো পাঁচটি প্রশ্নের সংক্ষিপ্ত উত্তর দাও ：
（ক）ভর ত্রুটির সংভ্ঞা দাও।
（খ）নিউক্লিয় ম্যাজিক সংখ্যা কী？এদেরকে ম্যাজিক সংখ্যা বলা হয় কেন ？
（গ）একটি অস্থির নিউক্লিয়াসের অর্ধায়ুকাল τ । এখন 2τ সময়ের ব্যবধানে মূল নিউক্লিয়াসের কত ভগ্নাংশ ক্ষয়প্রাপ্ত হবে ？
（ঘ）${ }^{18} \mathrm{O}_{8}\left({ }^{2} \mathrm{H}_{1}, \mathrm{p}\right) \chi$ বিঘটনে অজানা কণা，χ টि কী？
（ঙ）তেজস্ক্রিয় α－বিঘটনের গাইগার－নাটাল সূত্রটি লেখো।
（চ）তড়িৎচুম্বকীয় আবেশের মাধ্যনে পরিচালিত কণাত্বরণ যন্ত্রের উল্লেখ করো।
（ছ）Ω ব্যারিয়নের আইসোস্পিন ও স্ট্রেঞ্জনেস－এর মান কত ？
বিভাগ - খ

যে－কোনো তিনটি প্রশ্নের উত্তর দাও।
২।（ক）ভর সংখ্যার সঙ্গে কণাপ্রতি নিউক্লিয় বন্ধনশক্তির লেখটি এঁকে দেখাও।
（খ）কম ভর সংখ্যার অঞ্চলে অবস্থিত সূচাল শৃঙ্গগুলির তাৎপর্য কী？『
（গ）প্রতিফলিত নিউক্লিয়াস বলতে কী বোঝো ？একটি উদাহরণ দাও।
৩।（ক）निম্নলিখিত α－বিঘটনের Q মান（ MeV এককে）নির্ণয় করো ঃ

$$
{ }^{208} \mathrm{Po}_{84} \rightarrow{ }^{204} \mathrm{~Pb}_{82}+\alpha
$$

（খ）একটি নিউক্লিয়াস থেকে প্রথরে একটি α কণা এবং তারপরে দুটি β কণা নির্গত হয়। দেখাও যে পরিণত নিউক্লিয়াসটি প্রাথমিক নিউক্লিয়াসের একটি আইসোটোপ।

8। সাইক্লোট্রন অনুনাদের শর্তগুলি লেখো। সাইক্লোট্রন অনুনাদের কন্পাক্কের রাশিমালা নির্ধারণ করো।
২＋৩
৫।（ক）আলোকবর্ধক নলের（PMT）কার্যপ্রণালী ব্যাখ্যা করো।
（খ）একটি PMT－তে 10－টি ডাইনোড আছে যাদের প্রত্যেকটির বিবর্ধন গুণাঙ্ক 5। এই নলে গ্গাণ ইলেকট্র্রনগুলির সার্বিক বিবর্ধন নির্ণয় করো।

৬। (ক) কোয়ার্ক বলতে কী বোঝো ? কত রকর্মের কোয়ার্ক পাওয়া যায়? — তাদের একটি তালিকা প্রস্তুত করো।
(খ) নিম্নলিখিত কণাগুলির কোয়ার্কের গঠনবিন্যাস বর্ণনা করো।
(অ) প্রোটন
(আ) \sum^{-}কণা
(ই) π^{+}কণা
(ঈ) Ξ^{-}কণা
$(২+১)+২$

বিভাগ - গ

যে-কোনো চারটি প্রশ্নের উত্তর দাও :
৭। (ক) নিউক্লিয়াসের সেল সংগঠনের যোক্তিকতা সম্পর্কে দুটি সাক্ষ্যপ্রমাণ দাও।
(খ) নিউক্লিয় বলের ধর্মগুলি লেখো।
(গ) ${ }^{15} \mathrm{~N}_{7}$ नিউক্লিয়াসের বন্ধনশক্তি হিসাব করো। দেওয়া আছে $\mathrm{M}\left({ }^{15} \mathrm{~N}_{7}\right)=15 \cdot 000109 \mathrm{u}, \mathrm{M}\left({ }^{1} \mathrm{H}_{1}\right)=1.007825$, $\mathrm{M}_{\mathrm{n}}=1.008665 \mathrm{u}$ এখান থেকে এক গ্রাম ${ }^{15} \mathrm{~N}_{7}$-এর বন্ধনশক্তি নির্ণয় করো।

৮। (ক) ${ }^{4} \mathrm{He}_{2}$ নিউক্লিয়াসের স্পিন এবং প্যারিটি নির্ণয় করো।
(খ) U_{238} থেকে $4 \cdot 27 \mathrm{MeV}$ শক্তির α-কণা নির্গত হয়। এই নিউক্লিয়াসের বিঘটন শক্তি নিরূপণ করো।
(গ) ক্ষীণ প্রতিক্রিয়ার বৈশিষ্ট)গুলি বিবৃত করো। ক্ষীণ প্রতিক্রিয়ার একটি উদাহরণ দাও।
৯। (ক) β-বিঘটন ঘটায় এমন একটি নিউক্লিয়াসের উল্লেখ করো।
(খ) এই নিউক্লিয়াসগুলির প্রত্যেকটি থেকে কি শক্তিসম্পন্ন ইলেকট্ট্রন নির্গত হয় ?
(গ) β-বিঘটনের প্রক্রিয়ায় শক্তি সংরক্ষণের সমস্যাগুলি বিশদে বর্ণনা করো।
(ঘ) এই সমস্যা কীভাবে সমাধান করা হয়েছিল?
$১+১+8+8$

১০। (ক) রৈখিক কণাত্বরণ যন্ত্রের কার্যপ্রণালী ব্যাখ্যা করো। দেখাও যে এই LINAC যন্ত্রে n তম ড্রিফট নলের দৈর্ঘ্য \sqrt{n}-এর সঙ্গে সমানুপাতিক হবে।
(খ) LINAC যন্ত্রের অসুবিধাগুলি কী কী?
(গ) ভারতে কোথায় কোথায় কণাত্বরণ যন্ত্র আছে?
১১। (ক) GM গুণকের নিষ্প্রাণ সময় (dead time) এবং পুনর্জীবন সময় (recovery time) সংজ্ঞায়িত করো।
(খ) একটি GM গুণকের নিষ্প্রাণ সময় $400 \mu \mathrm{~s}$ । প্রতি মিনিটে 1000 গণনাকালীন অবস্থায় গুণকের প্রকৃত গণনার হার কত ?
(গ) GM গুণকের সাপেক্ষে প্রতিপ্রভা গুণকের সুবিধাগুলি কী কী?

$$
(২+২)+৩+৩
$$

১২। (ক) উদাহরণ সহযোগে যৌগিক নিউক্লিয়াস বিক্রিয়ার উদাহরণ দাও।
(খ) নিউক্লিয় বিক্রিয়ার অবচ্ছেদ বর্ণনা করো।
(গ) স্পিন ও আধানের সংরক্ষণের মাধ্যমে নিম্নলিখিত বিক্রিয়াটি হওয়া সম্ভব কি না মন্তব্য করো :

$$
\mathrm{K}^{-}+\mathrm{p} \rightarrow \Xi^{\mathrm{o}}+\mathrm{K}^{\mathrm{o}}
$$

(ঘ) একটি χ কণা $\chi \rightarrow \pi^{0}+\mu^{+}+v_{\mu}$ বিক্রিয়ার মাধ্যমে বিঘটিত হয়। χ কণাটি বোসন না ফার্মিয়ন সেটি নির্ধারণ করো।

[English Version]

The figures in the margin indicate full marks.

Group - A

1. Answer any five questions in brief:
(a) Define mass defect.
(b) What are the nuclear magic numbers? Why are these numbers called magic numbers?
(c) The half life of a unstable nucleus is τ. What fraction of the original nucleus will be decayed in time 2τ ?
(d) Determine the unknown particle, χ in reaction ${ }^{18} \mathrm{O}_{8}\left({ }^{2} \mathrm{H}_{1}, \mathrm{p}\right) \chi$.
(e) Write down the Geiger-Nuttal law for α-decay by radioactive nuclei.
(f) Name the accelerator that works on the principle of electromagnetic induction.
(g) What is the isospin and strangeness of Ω baryon?

Group - B

Answer any three questions.
2. (a) Draw the binding energy per nucleon versus the mass number curve.
(b) What do the peaks on the curve at lower mass number signify?
(c) What do you mean by mirror nuclei? Give one example.
3. (a) Calculate Q value (in MeV) of the following α-decay:

$$
{ }^{208} \mathrm{Po}_{84} \rightarrow{ }^{204} \mathrm{~Pb}_{82}+\alpha
$$

(b) A nucleus emits an α-particle followed by two β-particles. Show that the final nucleus is an isotope of the original one.
4. Write the condition for cyclotron resonance. Hence derive the expression for cyclotron resonance frequency.
5. (a) Explain the working principle of photo-multiplier tube (PMT).
(b) A PMT contains 10 dynodes, each having an amplification factor 5 . What is the overall gain of the secondary electrons in the PMT?
6. (a) What do you mean by quarks? How many possible quarks are there? List them.
(b) Write quark composition of
(i) Proton
(ii) Σ^{-}
(iii) π^{+}
(iv) Ξ^{-}
$(2+1)+2$

Group - C

Answer any four questions.
7. (a) Mention two evidences in support of shell structure in nucleus.
(b) Write down the properties of nuclear force.
(c) Calculate the binding energy of ${ }^{15} \mathrm{~N}_{7}$. Given $\mathrm{M}\left({ }^{15} \mathrm{~N}_{7}\right)=15 \cdot 000109 \mathrm{u}, \mathrm{M}\left({ }^{1} \mathrm{H}_{1}\right)=1.007825$, $M_{n}=1.008665 \mathrm{u}$. Hence find the binding energy of 1 gm of ${ }^{15} \mathrm{~N}_{7} . \quad 2+3+5$
8. (a) Find the spin and parity of ${ }^{4} \mathrm{He}_{2}$.
(b) Uranium - 238 emits α-particles of kinetic energy $4 \cdot 27 \mathrm{MeV}$. Determine the α-disintegration energy of Uranium - 238.
(c) Write down the basic features of weak interaction. Give an example of weak interaction.

$$
2+4+(3+1)
$$

9. (a) Give an example of a nucleus that shows β-decay.
(b) Do the electrons come out with the same energy from every such nucleus?
(c) Explain clearly what is the energy conservation problem in β-decay phenomenon.
(d) How was it solved? $1+1+4+4$
10. (a) Explain the working of linear accelerator. Hence show that the length of the nth drift tube in LINAC is proportional to \sqrt{n}.
(b) What are the disadvantages of LINAC?
(c) Where in India accelerator facilities are available?
11. (a) Define 'dead time' and 'recovery time' of GM counter.
(b) A GM counter has a dead time of $400 \mu \mathrm{~s}$. What are the true counting rates when the observed rates are 1000 per minute?
(c) What are the main advantages of scintillation counter over GM counter.
12. (a) Explain compound nuclear reaction with example.
(b) Define nuclear cross-section.
(c) Determine whether the reaction $\mathrm{K}^{-}+\mathrm{p} \rightarrow \Xi^{\mathrm{o}}+\mathrm{K}^{\mathrm{o}}$ is allowed.
by conservation of charge and spin.
(d) A particle χ decays as $\chi \rightarrow \pi^{0}+\mu^{+}+v_{\mu}$. Determine whether χ is boson on fermion. $4+2+2+2$
