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(Module - X) 

Full Marks : 50 

The figures in the margin indicate full marks. 
Candidates are required to give their answers in their own words 

as far as practicable. 
(Notations and symbols have their usual meaning.) 

Group-A 

(Marks-20) 

Section-I 

(Linear Algebra-II) 

Answer any one question. 10×1 

1. (a) Let V and W be vector spaces of finite dimension over a field F and T : V → W be a linear mapping.
Then show that the rank of T = the rank of matrix T. 5

 (b) A mapping F : 3 → ଷmaps the vector (2, 1, 1), (1, 2, 1) and (1, 1, 2) to (1, 1, –1), (1, –1, 1) and
(1, 0, 0) respectively. Show that F is not an isomorphism. 5   

2. (a) A linear mapping ܶ:ଷ→	ସ is defined by ܶ(ݔ, ,ݕ (ݖ = ݕ) + ,ݖ ݖ + ,ݔ ݔ + ,ݕ ݔ + ݕ + ,(ݖ ,ݔ) ,ݕ .ଷ	ϵ(ݖ
Find Im T and dimension of Im T. 5

(b) A linear mapping ܶ:ଷ→ଷ is defined by ܶ(0,1,1) = (1,0,1), ܶ(1,0,1) = (2,3,4), ܶ(1,1,0) = (1,2,3).
Find the matrix of T relative to the order basis (ϵଵ, ϵଶ, ϵଷ) where ϵଵ = (1,0,0), ϵଶ = (0,1,0), ϵଷ = (0,0,1).
Deduce that T is invertible. 5 

Section-II 

(Modern Algebra-III) 

Answer any one question. 10×1 

3. (a) Prove or disprove : A subgroup H of a group G is a normal subgroup if and only if every right coset of H
is also a left coset. 4 

 (b) Let G be a group. Let H be a subgroup of G such that ܪ ⊆ ܩ is cyclic then ܪ/ܩ Show that if .(ܩ)ܼ = .denotes the centre of G (ܩ)ܼ where ,(ܩ)ܼ 3

(c) Prove that the quotient group (ܳ/ܼ, +) is infinite but each of its elements is of finite order. 3 
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 4. (a) Suppose that there is a homomorphism from a group G on ܼଵ଴. Prove that G has normal subgroups of 
index 2 and 5.  3 

  (b) If K is a subgroup of G and N is a normal subgroup of G, prove that ܭ ܭ) ∩ ܰ)ൗ  is isomorphic to ܰܭൗܰ . 

       3 

  (c) Find all homomorphism from ܼ଺ into ܼସ. How many of those are epimorphism? Justify your answer. 2+2 

Group-B 

(Tensor Calculus) 

(Marks-15) 

 Answer any three questions. 5×3 

 5. If ܣ௜(݅ = 1,2,… , ݊) are components of an arbitrary contravariant vector and ܥ௜௝ܣ௜ܣ௝ is an invariant then 
prove that ܥ௜௝ + ,݅)௝௜ܥ ݆ = 1,2… , ݊) are components of a second order tensor of type (0, 2). 5   

 6. If ܣ௜௝(݅, ݆ = 1,2… , ݊) are components of a skew-symmetric tensor of rank 2, then prove that 

    ൫ߜ௝௜	ߜ௟௞ ௜௞ܣ	௝௞൯ߜ	௟௜ߜ	+ = 0. 5 

 7. If all the components of a tensor are zero at a point in one co-ordinate system, then prove that they are all 
zero at this point in every co-ordinate system.  5  

 8. If ܣ௜௝ is a skew-symmetric tensor, then show that 

,௜௝ܣ     ݆ = ଵ√௚	 డడ௫ೕ 	൫ඥ݃	ܣ௜௝൯. 5 

 9. Find ݃ and ݃௜௝ corresponding to the line element  

ଶݏ݀   = ଶ(ଵݔ݀)3 + ଶ(ଶݔ݀)2 + ଶ(ଷݔ݀)4 −  in Riemannian space ଷܸ. 5 (ଷݔ݀)	(ଵݔ݀)6

Answer either Group-C or Group-D. 

Group-C 

(Differential Equation-II) 

(Marks-15) 

     Answer any one question. 15×1 

 10. (a) State the first shifting property of Laplace transformation. Using this property, find the Laplace 
transform of ݁ିଶ௧(3 cos ݐ6 − 5 sin  4+1 .(ݐ6

  (b) Find the inverse Laplace transform of 
ସ௣ାହ(௣ିଵ)మ(௣ାଶ). 5 
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  (c) Find the power series solution of the initial value problem 

    
ௗమ௬ௗ௫మ + ݔ ௗ௬ௗ௫ + ݕ2 = 0, (0)ݕ = 1, ଵ(0)ݕ	 = 0. 5 

 11. (a) Find the Laplace transform of ݐଶ݁௔௧ sin  5 .ݐܽ

  (b) Using shifting property of Inverse Laplace Transform, evaluate ିܮଵ ቄ ଺௣ିସ௣మିସ௣ାଶ଴ቅ. 5 

  (c) Solve by using Laplace transform of  
ௗమ௬ௗ௧మ + ݕ9 = cos (0)ݕ when ,ݐ2 = 1 and ݕ ቀగଶቁ = −1. 5 

Group-D 

(Graph Theory) 

(Marks-15) 

     Answer any three questions. 5×3 

 12. (a) Show that there is no simple graph with six vertices of which the degrees of five vertices are 5, 5, 3, 2 
and 1. 2 

  (b) Prove that the number of odd degree vertices of a graph G is always even. 3 

 13. Obtain a minimal spanning tree of the following graph using Kruskal’s algorithm. 5 

 

 14. (a) Find a Euler trail in the following graph G. 3 

 

  (b) Explain spanning tree in a simple connected graph with example.  2 
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 15. State and prove the necessary and sufficient condition for a graph to be an Euler graph.  5 

 16. (a) Show that a complete graph with n vertices consists of ݊(݊ − 1) 2ൗ  edges. 3 

  (b) Prove that a connected graph with n vertices and (݊ − 1) edges is a tree. 2 

 

__________ 


