2021

MATHEMATICS — GENERAL

Fourth Paper

Full Marks: 100

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পুর্ণমান নির্দেশক।

Module-VII is compulsory and answer any one Group from Module-VIII

Module-VII

[Elements of Computer Science and Programming]

(মান : ৫০)

১ নং প্রশ্ন এবং অবশিষ্ট থেকে **যে-কোনো পাঁচটি** প্রশ্নের উত্তর দাও।

১। যে-কোনো পাঁচটি প্রশ্নের উত্তর দাও ঃ

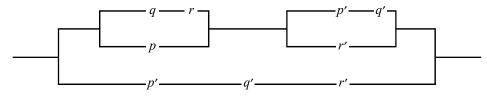
- (ক) $|\tan x| + e^{-x^3}$ -এর FORTRAN রূপ লেখোঁ।
- খে) সম্পূর্ণ নাম লেখো ঃ (অ) CPU (আ) ALU।
- (গ) তিন প্রবেশ-দ্বার বিশিষ্ট NOR দ্বারের সত্যসারণী লেখো।
- (ঘ) নিম্নলিখিত বুলীয় অপেক্ষকের একটি সুইচ বর্তনী গঠন করো । xy + xy' + x'y' ।
- (৬) L-এর মান নির্ণয় করো, যেখানে L = I/J + K **2/M + A*B, যখন I = 4, J = 3, K = 5, M = 7, A = 1.5, B = 3.4.
- (চ) (43.1875)₁₀ সংখ্যাটিকে দ্বৈতাঙ্গী সংখ্যাতে পরিণত করো।
- (ছ) নিম্নলিখিত প্রোগ্রাম-অংশটিতে 'N'-এর সর্বশেষ মান কত ঃ

IF (2 * J · L E Q · 3 * N) GO TO 10 N = N + 2 GO TO 20 10 N = J 20 N = N + J যদি N ও J -এর প্রাথমিক মানদ্বয় যথাক্রমে N = 2, J = 3 হয়?

- (জ) নিম্নলিখিত বিবৃতিটির ভুল (যদি থাকে) শনাক্ত করো এবং সঠিক বিবৃতিটি লেখো (যুক্তি সহকারে) : READ (* , *) A, B/0.7, 2.5/.
- (ঝ) x'y' + xy এই বুলীয় রাশিমালাটির Complement (পরিপুরক)-কে DNF আকারে প্রকাশ করো।

Please Turn Over

২×৫


২। (ক) কেবলমাত্র NAND যৌক্তিক দ্বারের সাহায্যেf(x,y,z)=x+y+xz+y'z এই অপেক্ষকটি'র একটি যৌক্তিক বর্তনী অঙ্কন করো। 8 খে) (x + y + z) (xy + xz)-কে সম্পূর্ণ বৈকল্পিক স্বভাবী (DNF) আকারে প্রকাশ করো। 8 ৩। (ক) টীকা লেখো ঃ (অ) ASCII কোড (আ) যন্ত্রভাষা ২+২ (খ) একটি সংখ্যা 4 দিয়ে বিভাজ্য, কিন্তু 8 দিয়ে অবিভাজ্য কি-না পরীক্ষা করার জন্য একটি অ্যালগোরিদম্ লেখো। 8 8। (ক) x-এর মান নির্ণয় করো, যেখান $(AB3)_{16} = (x)_6$ ২ (খ) মান নির্ণয় করো $(1101.01)_2 \div (101)_2$ ۲ (গ) দৃষ্টান্তসহ ব্যাখ্যা করো : IF-THEN-ELSE বিবৃতি (FORTRAN এ)। () ৫। (ক) Simpson's $\frac{1}{3}$ নিয়ম ব্যবহার করে $\int_{0}^{1} \frac{dx}{1+x+x^2}$ এর মান চার দশমিক স্থান পর্যন্ত সঠিকভাবে পেতে একটি FORTRAN প্রোগ্রাম লেখো। 8 (খ) ফাংশন সাব-প্রোগ্রাম ব্যবহার করে n_{c_r} মান নির্ণয়ের জন্য একটি FORTRAN প্রোগ্রাম লেখো। 8 ৬। (ক) একটি স্বাভাবিক সংখ্যা 3 দ্বারা বিভাজ্য, কিন্তু 9 দ্বারা অবিভাজ্য কি-না পরীক্ষা করার জন্য একটি অ্যালগোরিদম্ তৈরি করো। 8 $2x^2 + 7x + 3 = 0$ সমীকরণের বীজগুলি নির্ণয়ের জন্য একটি FORTRAN 77/90 প্রোগ্রাম লেখো। (켁) 8 ৭। (ক) 9টি কোটি নিয়ে Simpson's $\frac{1}{3}$ সূত্রের সাহায্যে $\int_{1.6}^{2.8} \frac{dx}{\sqrt{1+x^2}}$ -এর মান বের করার জন্য একটি BASIC প্রোগ্রাম লেখো। ৬ (খ) BASIC-এ TAB function-এর উপর একটি টীকা লেখো। ২

(2)

৮। (ক) Karnaugh Map ব্যবহার করে নিম্নলিখিত বুলীয় অপেক্ষকটি সরল আকারে প্রকাশ করো ঃ

$$f(x, y, z) = xy'z + xy'z' + x'y'z + x'y'z'$$
8

(খ) প্রদত্ত সুইচ বর্তনীর জন্য একটি বুলীয় রাশি গঠন করো :

এর সমতুল একটি সরল বর্তনীর নকশা অঙ্কন করো।

8

- ৯। (ক) একটি Fibonacci sequence 1, 1, 2, 3, 5, 8, ..., (যার শেষ পদটি ১০০০-এর বেশি নয়) তৈরি করার জন্য একটি FORTRAN প্রোগ্রাম লেখো।
 - (খ) একটি ম্যাট্রিক্সের transpose বের করার জন্য একটি BASIC/FORTRAN প্রোগ্রাম লেখো।

১ ০। (क)	x	у	Ζ	f
	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	1
	1	1	1	1

(অ) উপরোক্ত সত্যসারণী দ্বারা প্রকাশিত অপেক্ষক 'f' -কে minterms-গুলির যোগফল বা DNF আকারে প্রকাশ করো।

(আ) 'f'-এর DNF আকারে সরলীকরণ করো।

(খ) বুলীয় বীজগণিতে প্রমাণ করো ঃ

f(a, b, c) = ab + bc + ca= $(a + b) \bullet (b + c) \bullet (c + a)$

[English Version]

The figures in the margin indicate full marks.

Module-VII

[Elements of Computer Science and Programming]

(Marks : 50)

Answer question number 1 and any five from the rest.

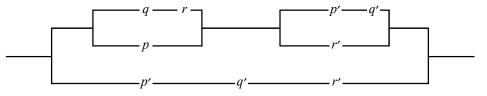
1. Answer any five questions :

- (a) Write FORTRAN expression of $|\tan x| + e^{-x^3}$.
- (b) Write full forms of (i) CPU (ii) ALU.
- (c) Write down truth table of NOR gate with three inputs.
- (d) Construct a switching circuit representing the Boolean expression xy + xy' + x'y'.
- (e) Evaluate the value of L, where L = I/J + K **2/M + A*B, when I = 4, J = 3, K = 5, M = 7, A = 1.5, B = 3.4.
- (f) Convert $(43.1875)_{10}$ to its binary equivalent.

Please Turn Over

(3)

8


২+২

 2×5

(g) What would be the final value of 'N' at the end of the following program segment : IF $(2 * J \cdot L E Q \cdot 3 * N)$ GO TO 10 N = N + 2GO TO 20 $10 \ N = J$ 20 N = N + Jif the initial values of N and J are assumed to be N = 2, J = 3? (h) Point out error if any, in the following statement with proper reasoning and correct them : READ (*, *) A, B/0.7, 2.5/. (i) Find the complement of the following Boolean expression in DNF x'y' + xy. 2. (a) Using only NAND logic gate, draw a circuit that realizes the function f(x, y, z) = x + y + xz + y'z. 4 Express (x + y + z) (xy + xz) in full Disjunctive Normal Form (DNF). 4 (b)3. (a) Write short notes on : (i) ASCII Code (ii) Machine Language 2+2(b) Draw an algorithm to test whether a given natural number is divisible by 4, but not by 8. 4 4. (a) Calculate the value of x, where $(AB3)_{16} = (x)_6$ 2 (b) Compute $(1101 \cdot 01)_2 \div (101)_2$ 3 (c) Explain with illustrations IF-THEN-ELSE statement in FORTRAN. 3 Write a FORTRAN program to find the value of the integral $\int_{1}^{1} \frac{dx}{1+x+x^2}$ correct to four decimal **5.** (a) places using Simpson's $\frac{1}{3}$ rd rule. 4 4 (b) Write a FORTRAN program to find n_{c_r} using function sub-program. 6. (a) Write an efficient algorithm to test whether a given natural number is divisible by 3, but not by 9. 4 Write a FORTRAN 77/90 program to find the roots of the equation $2x^2 + 7x + 3 = 0$ 4 (b) 7. (a) Write a BASIC programme to evaluate $\int_{1.6}^{2.8} \frac{dx}{\sqrt{1+x^2}}$ by Simpson's $\frac{1}{3}$ rd rule using 9 ordinates. 6 (b) Write a short note on TAB function in BASIC. 2 8. (a) Using Karnaugh Map, express the following Boolean function in simplified form :

$$f(x, y, z) = xy'z + xy'z' + x'y'z + x'y'z'$$
4

(b) Construct a Boolean function to represent the following switching circuit.

Draw an equivalent simplified circuit.

- **9.** (a) Write a FORTRAN programme to generate the Fibonacci sequence 1, 1, 2, 3, 5, 8, ..., the last term being not greater than 1000.
 - (b) Write a BASIC/FORTRAN program to fine the transpose of a matrix.
- **10.** (a) Given the truth table :

x	У	Ζ	f	
0	0	0	0	
0	0	1	0	
0	1	0	0	(i) Obtain ' f ' in sum of minterms or in DNF.
0	1	1	1	(ii) Obtain simplified form of ' f ' in sum of products.
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	2+2

(b) Prove that f(a, b, c) = ab + bc + ca= $(a + b) \cdot (b + c) \cdot (c + a)$

Module-VIII

(বিভাগ - ক)

[A Course of Calculus]

১১ নং প্রশ্ন এবং অবশিষ্ট থেকে **যে-কোনো পাঁচটি** প্রশ্নের উত্তর দাও।

- >>। যে-কোনো পাঁচটি প্রশের উত্তর দাও ঃ
 - (ক) $f_n(x) = \frac{\sin nx}{n}; n \in N; x \in R$, তাহলে সীমা অপেক্ষক $\{f_n\}_n$ -এর পয়েন্ট অনুযায়ী সীমা অপেক্ষক (যদি থাকে)-এর মান নির্ণয় করো।

Please Turn Over

(5)

4

২×৫

4

- (খ) x + x²/2² + 2!/3³ x³ + 3!/4⁴ x⁴ + ... ঘাত শ্রেণিটির অভিসরণ ব্যাসার্ধ নির্ণয় করো।
- (গ) দেখাও যে $\sum_{n=1}^{\infty} rac{\cos nx}{n^4}$ শ্রেণিটি R-এর উপর সমভাবে অভিসারী।
- (ঘ) মান নির্ণয় করো ঃ $L\left\{\cos^2 at
 ight\}$ ।
- (ঙ) সমাধান করো : $\frac{d^4y}{dx^4} = y$ ।
- (চ) অনির্ণীত সহগ পদ্ধতির সাহায্যে $rac{d^2y}{dx^2}+y=10e^{2x}$ সমীকরণটির বিশেষ সমাধান y_p নির্ণয় করো।
- ছে) 'a' ও 'b' -কে z = ax + by + ab থেকে নিষ্কাশন করে আংশিক অবকল সমীকরণ গঠন করো।

(জ) মান নির্ণয় করো
$$: L^{-1}\left\{\frac{s}{s^2+16}\right\}$$
 ।

(ঝ) যদি $x \in [-\pi, \pi]$ -এর জন্য f(-x) = -f(x) হয়, তাহলে দেখাও যে Fourier সহগ $a_n = 0, n = 0, 1, 2, ...$

১২। (ক)
$$f_n(x) = \frac{nx}{n+x}, x \in [0, a], a > 0$$
, দেখাও যে $\{f_n\}$ অনুক্রমটি $[0, a]$ অন্তরালে সমভাবে অভিসারী। 8

(খ) দেখাও যে $\{f_n\}$ অনুক্রমটি, যেখানে $f_n(x) = x^n$, [0, a] অন্তরালে সমভাবে অভিসারী (n = 1, 2, 3, ...) যখন 0 < a < 1 এবং [0, 1] অন্তরালে শুধুমাত্র বিন্দু অনুযায়ী অভিসারী। 8

১৩। (ক)
$$\log\left(\frac{1}{1-x}\right)$$
-এর ঘাত শ্রেণি ব্যবহার করে, দেখাও যে $\int_{0}^{1} \log\left(\frac{1}{1-x}\right) dx = 1$ । 8

(খ) দেখাও যে,
$$x^4 + \frac{x^4}{1+x^4} + \frac{x^4}{(1+x^4)^2} + \dots$$
 শ্রেণিটি [0, 1] অন্তরালে সমভাবে অভিসারী নয়। 8

১৫। (ক) সমাধান করো ঃ

$$\frac{dx}{dt} = -3x + 4y$$

$$\frac{dy}{dt} = -2x + 3y.$$
8

(খ) ভেদপ্রাচল পদ্ধতির সাহায্যে সমাধান করো ঃ

$$\frac{d^2y}{dx^2} + ay = \sec ax$$

১৬। (ক) যদি ঘাত শ্রেণি $\sum_{n=0}^{\infty} a_n x^n$ -এর অভিসরণ ব্যাসার্ধ R হয়, তাহলে দেখাও যে ঘাত শ্রেণি $\sum_{n=0}^{\infty} \frac{a_n x^{n+1}}{n+1}$ -এরও অভিসরণ ব্যাসার্ধ R হবে।

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

১৭। (ক) যদি
$$L[f(t);s] = F(s)$$
 হয়, তবে প্রমাণ করো যে, $L\left[\frac{f(t)}{t};s\right] = \int_{s}^{\infty} F(s)ds$ । 8

(খ) সমাধান করো ঃ
$$(D^2 - 3D + 2)y = xe^{3x}$$
 8

১৮। (ক) আংশিক অবকল সমীকরণটির সমাধান করো ঃ

$$(y+zx)p - (x+yz)q = x^2 - y^2$$

(খ) মান নির্ণয় করো ঃ
$$L\left\{e^{at}
ight\}$$
 ২

১৯। (ক) অনির্ণীত সহগ পদ্ধতি প্রয়োগ করে সমাধান করো s $\frac{d^2y}{dx^2} + 4y = \sin 2x$ 8

(খ)
$$L^{-1}\left(\frac{1}{s(s^2+\omega^2)}\right)$$
 -এর মান নির্ণয় করো। 8

২০। (ক) $z = f(xy) + g\left(\frac{x}{y}\right)$ থেকে অবাধ অপেক্ষক f ও g-কে অপসারণ করে একটি আংশিক অবকল সমীকরণ গঠন করো। ৪

(খ)
$$\frac{d}{dx}\left(x\frac{dy}{dx}\right) + \frac{\lambda}{x}y = 0, (\lambda > 0)$$
-এর আইগেন মানসমূহ ও আইগেন অপেক্ষকগুলি নির্ণয় করো, যেখানে $y(1) = 0, y'(e^{\pi}) = 0$ ।

Please Turn Over

(8)

[English Version]

The figures in the margin indicate full marks.

Module-VIII

(Group - A)

[A Course of Calculus]

(Marks : 50)

Answer question number 11 and any five from the rest.

- 11. Answer any five questions :
 - (a) Let $f_n(x) = \frac{\sin nx}{n}$; $n \in N$; $x \in R$. Find the pointwise limit function (in any) of the sequence of functions $\{f_n\}_n$.
 - (b) Find the radius of convergence of the power series $x + \frac{x^2}{2^2} + \frac{2!}{3^3}x^3 + \frac{3!}{4^4}x^4 + \dots$
 - (c) Show that $\sum_{n=1}^{\infty} \frac{\cos nx}{n^4}$ is uniformly convergent on *R*.
 - (d) Find $L\left\{\cos^2 at\right\}$.
 - (e) Solve $\frac{d^4y}{dx^4} = y$.
 - (f) Find the particular integral y_p , by the method of undetermined coefficient :

$$\frac{d^2y}{dx^2} + y = 10e^{2x}$$

- (g) Form a partial differential equation by eliminating a and b from z = ax + by + ab.
- (h) Find the following inverse Laplace transformation: $L^{-1}\left\{\frac{s}{s^2+16}\right\}$.
- (i) If f(-x) = -f(x) for all x in $[-\pi, \pi]$, show that Fourier coefficient $a_n = 0$, for all n = 0, 1, 2, ...
- 12. (a) Let $f_n(x) = \frac{nx}{n+x}$, $x \in [0, a]$ where a > 0. Show that the sequence $\{f_n\}$ is converges uniformly on [0, a].
 - (b) Show that sequence $\{f_n\}$ where $f_n(x) = x^n$ is convergent uniformly on [0, a], n = 1, 2, 3, ..., for 0 < a < 1, only pointwise convergent on [0, 1].

 2×5

13. (a) Using power series of log
$$\left(\frac{1}{1-x}\right)$$
, show that $\int_{0}^{1} \log\left(\frac{1}{1-x}\right) dx = 1.$ 4

(b) Show that the series
$$x^4 + \frac{x^4}{1+x^4} + \frac{x^4}{(1+x^4)^2} + \dots$$
 is not uniformly convergent on [0, 1]. 4

14. Find the Fourier series of $f(x) = x^2$, $-\pi < x < \pi$. Hence deduce from it $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ 5+3

15. (a) Solve: $\frac{dx}{dt} = -3x + 4y$ $\frac{dy}{dt} = -2x + 3y$

(b) Solve by the method of variation of parameters

$$\frac{d^2y}{dx^2} + ay = \sec ax \,. \tag{4}$$

16. (a) If R be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$, then show that the radius of

convergence of the power series $\sum_{n=0}^{\infty} \frac{a_n x^{n+1}}{n+1}$ is also *R*. 4

(b) From the expansion $\frac{1}{1+x^2} = 1-x^2+x^4-x^6+..., |x|<1$, obtain the power series expansion of

 $\tan^{-1}x$ and hence show that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$ 4

17. (a) If
$$L[f(t);s] = F(s)$$
, then prove that $L\left[\frac{f(t)}{t};s\right] = \int_{s}^{\infty} F(s)ds.$ 4

(b) Solve
$$(D^2 - 3D + 2)y = xe^{3x}$$
.

18. (a) Solve the partial differential equation

$$(y+zx)p - (x+yz)q = x^2 - y^2$$
. 6

(b) Find
$$L\{e^{at}\}$$
.

19. (a) Solve by the method of undetermined coefficients: $\frac{d^2y}{dx^2} + 4y = \sin 2x$ 4

(b) Find
$$L^{-1}\left(\frac{1}{s(s^2 + \omega^2)}\right)$$
. 4

Please Turn Over

(9)

(10)

20. (a) Form partial differential equation by eliminating the arbitrary function f and g from

$$z = f(xy) + g\left(\frac{x}{y}\right).$$
4

(b) Find the eigenvalues and eigenfunctions of

$$\frac{d}{dx}\left(x\frac{dy}{dx}\right) + \frac{\lambda}{x}y = 0; \ y(1) = 0, \ y'(e^{\pi}) = 0, \ \lambda > 0.$$

Module-VIII

(বিভাগ - খ)

[Discrete Mathematics]

(Marks : 50)

১১ *নং প্রশ্ন* এবং অবশিষ্ট থেকে *যে-কোনো পাঁচটি* প্রশ্নের উত্তর দাও।

>>. যে-কোনো পাঁচটি প্রশ্নের উত্তর দাও ঃ

- (ক) $\phi(36)$ -এর মান বের করো যেখানে ϕ হল Euler's Phi অপেক্ষক।
- (খ) যদি $a \, {\mathfrak S} \, b$ -এর গ.সা.গু 1 হয়, তবে দেখাও যে $a^2 \, {\mathfrak S} \, b^2$ এর গ.সা.গু = 1।
- (গ) দেখাও তিনটি ক্রমিক সংখ্যার গুণফল সর্বদা 6 দ্বারা বিভাজ্য।
- (ঘ) $a_n = a_{n-1} + 4a_{n-2}, n \ge 2, a_0 = 1, a_1 = 3$ দ্বারা সংজ্ঞায়িত $\{a_n\}$ অনুক্রমের চারটি পদ লেখো।
- (ঙ) (A748)16 সংখ্যাটিকে দ্বি-নিধানী রাশিতে প্রকাশ করো।
- (চ) x, y, z তিনটি পূর্ণসংখ্যা x | y z এবং গ.সা.গু. (x, y) = 1 হলে দেখাও যে x | z |
- (ছ) দেখাও যে, 70! + 1 ≡ 0 (mod 71)।
- (জ) সত্য-সারণির সাহায্যে দেখাও যে, xy' + xy + x'y = x + y।
- (ঝ) পাটিগণিতের মৌলিক উপপাদ্যটি বিবৃত করো।

- (খ) কোন ক্ষুদ্রতম ধনাত্মক পূর্ণসংখ্যাকে 2, 3, 5 ও 11 দ্বারা ভাগ করলে যথাক্রমে 1, 2, 3, 4 ভাগণেষ থাকে? 8
- ১৩. (ক) গাণিতিক আরোহী পদ্ধতির (mathematical induction) সাহায্যে প্রমাণ করো যে, যে-কোনো ধনাত্মক পূর্ণসংখ্যা n- এর জন্য $2^{2n} - 1$ সংখ্যাটি '3' দ্বারা বিভাজ্য। 8
 - (খ) মৌলিক সংখ্যার সংজ্ঞা দাও। 353 সংখ্যাটি মৌলিক কি না যুক্তি দিয়ে দেখাও।
- >8. (ক) প্রদত্ত ISBN-গুলি সঠিক কি না নির্ণয় করো ঃ
 - (i) 0 27 04003 5
 - (ii) 81 203 1147 7

১+৩

(খ) সাতটি দল অংশগ্রহণ করবে এমন একটি Round Robin প্রতিযোগিতার সূচি গঠন করো। (পূর্ণসংখ্যার Congruence ব্যবহার করো)। ১৫. (ক) 1! + 2! + 3! + 4! + 5! + ... + 100! কে 15 দ্বারা ভাগ করলে কত ভাগশেষ থাকবে? 8 (খ) সমাধান করো $zx + 3y = 50, x, y \in N$ । 8 ১৬. (ক) 15 সংখ্যা বিশিষ্ট একটি VISA CREDIT CARD-এর নম্বর হল 456398103862540, চেক ডিজিট নির্ণয় করো। ৪ (খ) সমাধান করো $contraction 6x \equiv 3 \pmod{9}$ । 8 **১৭.** (ক) একটি বুলীয় অ্যালজেব্রা $(B, +, \cdot, \prime)$ এর জন্য প্রমাণ করো ab' + a'b = 0 যদি a = b হয় এবং যদি a = b হয় তাহলে ab' + a'b = 0 হবে। 8 (খ) সত্যসারণী ব্যবহার করে (x + y) (y + z) (x' + y' + Z) বুলীয় অপেক্ষকটির DNF নির্ণয় করো। 8 ১৮. (ক) কারক অপেক্ষক (generating function) ব্যবহার করে পূর্ণসংখ্যার সমাধান নির্ণয় করো a + b + c = 10যেখানে $0 \le a \le 2, \ 2 \le b \le 4$ এবং c = 4 বা 5 হয়। 8 (খ) যে-কোনো পূর্ণসংখ্যা *n*-এর জন্য প্রমাণ করো, $\frac{n^7}{7} + \frac{n^3}{3} + \frac{11n}{21}$ একটি পূর্ণসংখ্যা। 8 **১৯.** (ক) (x + y + xy).(x + y) বুলীয় অপেক্ষকটির সুইচ-বর্তনী অঙ্কন করো এবং তার একটি সরল আকারের বর্তনী-আনয়ন করো। 8 (খ) লজিক গেট কাকে বলে? 3 প্রকার লজিক গেটের ব্যবহার আলোচনা করো। 8

[English Version]

The figures in the margin indicate full marks.

Module-VIII

(Group - B)

[Discrete Mathematics]

(Marks : 50)

Answer question number 11 and any five from the rest.

11. Answer *any five* questions :

(a) Find $\phi(36)$ where ϕ is the Euler's Phi function.

- (b) If gcd(a, b) = 1, then prove that $gcd(a^2, b^2) = 1$.
- (c) Prove that the product of any three consecutive integers is divisible by 6.
- (d) Find four terms of the sequence $\{a_n\}$, $n \ge 0$, defined by $a_n = a_{n-1} + 4a_{n-2}$, $n \ge 2$ with $a_0 = 1$, $a_1 = 3$.

Please Turn Over

(11)

 2×5

(12)

- (e) Convert $(A748)_{16}$ to binary equivalent.
- (f) If x, y, z are integers, $x \mid yz$ and h.c.f. (x, y) = 1, then prove that $x \mid z$.
- (g) Show that $70! + 1 \equiv 0 \pmod{71}$.
- (h) Using truth-table, show that xy' + xy + x'y = x + y.
- (i) State the 'Fundamental Theorem of Arithmetic'.
- 12. (a) Find integers m and n, such that 512m + 320n = 64.
 - (b) Find smallest positive integer which leaves the remainder 1, 2, 3, 4 when divided by the prime numbers 2, 3, 5,11 respectively.

4

- 13. (a) Prove that $2^{2n} 1$ is divisible by 3 by the principle of mathematical induction for every positive integer *n*.
 - (b) Define prime number. Is 353 a prime number? Justify your answer. 1+3
- 14. (a) Determine whether the following ISBNs are valid :
 (i) 0 27 04003 5
 (ii) 81 203 1147 7.
 - (b) Construct a Round robin Tournament schedule for 7 teams using congruence of integers. 4
- **15.** (a) What is the remainder when 1! + 2! + 3! + 4! + 5! + ... + 100! is divided by 15?4(b) Solve 2x + 3y = 50, $x, y \in N$.4
- 16. (a) The first 15 digits of a credit card visa is 456398103862540. Find the check digit for this card. 4 (b) Solve : $6x \equiv 3 \pmod{9}$.
- 17. (a) In a Boolean algebra $(B, +, \cdot, ')$ prove that ab' + a'b = 0 if and only if a = b.
 - (b) Find the DNF of the Boolean expression (x + y) (y + z) (x' + y' + Z) by truth table method. 4
- 18. (a) Using generating function, find all integral solutions for a + b + c = 10, where $0 \le a \le 2, 2 \le b \le 4, c = 4$ or 5. 4
 - (b) Show that for any integer n, $\frac{n^7}{7} + \frac{n^3}{3} + \frac{11n}{21}$ is an integer. 4
- 19. (a) Draw a switching circuit for the Boolean expression $(x + y + xy) \cdot (x + y)$. Obtain a Simpler equivalent circuit.
 - (b) What is a logic gate? Give 3 basic types of gates used in combinational circuits. 4