2020

PHYSICS — HONOURS

Paper: DSE-A-2

(Laser and Fibre Optics)

Full Marks: 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer any five questions:

 2×5

- (a) The ratio of population of two energy level is 1.059×10^{-30} . Find the wavelength of the light emitted at 330 K.
- (b) What is metastable state? What is the importance of such state in achieving laser action?
- (c) Discuss the role of reflectors in an optical resonator.
- (d) Define the quality factor Q in a resonator cavity.
- (e) Distinguish between step index fibre and graded index fibre structure.
- (f) Is light amplification possible in the absence of stimulated emission?
- (g) What is meant by self-focusing?

Group - B

Answer any three questions.

- Write down the rate equations in two level laser system. Show that population inversion cannot be achieved in this system.
- **3.** Write down the equation for stability condition in an optical resonator and draw the stability diagram. Indicate the points in the stability diagram for the following configurations of optical resonators:
 - (a) $r_1 = r_2 = \frac{L}{2}$ (b) $r_1 \to \infty$ and $r_2 = 2L$,

where r_1 and r_2 are the radii of curvature of the two mirrors of the resonator and L is the length of the cavity.

1+2+2

4. What are the sources of attenuation in an optical fibre?

If the output power is half of the input power, then find out the attenuation of the optical beam.

2+3

- 5. What is Q-switching in Laser? Mention the method of Q-switching.
- 6. Show that the frequency spread (Δv) of a spectral line is of the order of the inverse of the coherence time (τ_c) .

Group - C

Answer any four questions.

- 7. Deduce the relation, with a suitable diagram, between Einstein's A and B coefficients. Hence, at thermal equilibrium, obtain the ratio of the number of spontaneous to stimulated emissions.
- **8.** (a) Why is a four level laser more effective than a three level laser?
 - (b) How are modes formed in a cavity of length L? What is mode locking?
 - (c) What is the benefit of using spherical resonator?

3+(3+2)+2

5

9. The schematic diagram of a four level LASER with correspondig decay rates is given below:

- (a) Indicate the metastable state.
- (b) Mention the levels between which non-radiative transitions take place.
- (c) Write down decay rates in descending order and explain.
- (d) Write down the rate equations for different levels in this system and explain each term. 1+2+3+4
- 10. (a) Let a step index single mode fibre is characterised by

$$n(r) = n_1$$
 for $0 < r \le a$ (core)
= n_2 for $r > a$ (cladding)

where n(r) is refractive index,

 k_0 = free space wave number

 β = the wave propagation constant and

a = radius of the core.

Show that the guided mode is possible when $n_2^2 < \frac{\beta^2}{k_0^2} < n_1^2$.

- (b) In the case of multimode grade index fibre, using power law profile, show that a parabolic index fibre can accommodate nearly 25 modes.
- (c) A step index fibre with n_1 =1·49 and n_2 = 1·465 has a core radius a = 5·90 μ m. Calculate the operational wavelength (λ_0) for which wave guide parameter, V = 9.
- 11. (a) Suppose the reference wave in hologram is given by $E_r = E_0 e^{-i(\omega t k_z k_n \sin \theta)}$ and the spherical wave emanating from point source is given as

$$E_{sph} = E_1 e^{-i \left(\omega t - k_z - \frac{k_x^2}{2z_0} \right)}$$

Then find out the resultant intensity on the plate. Show that condition for maxima in the hologram is given by

 $\Delta x = 4\lambda$ (Choose $\theta = 15^{\circ}$).

- (b) Suppose the field incident on a nonlinear dielectric medium is given by $E = E_o \cos \omega t$.
 - (i) Calculate the polarization *P* and identify the 2nd harmonic term.
 - (ii) Why can 2nd harmonic generation not occur in isotropic medium? 5+(3+2)
- 12. (a) Due to movement of the radiating atom there is a change in frequency and the corresponding broadening of light is known as Doppler broadening. Considering an average velocity of atoms $v = \sqrt{\frac{8KT}{M\pi}}$, find an expression of Doppler width of spectral line.
 - (b) Explain TE and TM mode propagation for a guided wave with suitable diagram. Also write the expression of the fields of such wave if the fiber is along z-direction.