2020

MATHEMATICS — HONOURS

Seventh Paper

(Module - XIII)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

N, Z, Q, R, C respectively denote the set of natural numbers, integers, rational, real numbers and complex numbers.

Group - A

[Analysis - IV]

(Marks: 20)

Answer any one question.

1. (a) Let f and φ be two functions of x such that for some positive real number λ , $0 < f(x) \le \lambda \varphi(x)$ for all $x \ge a$. If each of f and φ be integrable on [a, X] for every X > a, prove that $\int_a^\infty f(x) dx$ converges

if
$$\int_{a}^{\infty} \varphi(x)dx$$
 converges and $\int_{a}^{\infty} \varphi(x)dx$ diverges if $\int_{a}^{\infty} f(x)dx$ diverges.

- (b) Test the convergence of the integral $\int_{0}^{1} \frac{\sqrt{x}}{e^{\sin x} 1} dx.$
- (c) Establish the convergence of $\int_{0}^{\infty} \frac{x \log x}{\left(1 + x^{2}\right)^{2}} dx$ and find its value. 8+6+6
- 2. (a) Show that $\int_{0}^{1} \frac{1}{(x+1)(x+2)\sqrt{x(1-x)}} dx$ is convergent.

Please Turn Over

- (b) State Abel's Test in connection with the convergence of improper integral of product of two functions over a bounded and closed interval. Using it, show that $\int_{0}^{1} \frac{\log_{e}(1+x)\sin\frac{1}{x}}{x} dx$ is convergent.
- (c) Express $\int_{0}^{1} x^{m} (1-x^{p})^{n} dx$ in terms of Beta function mentioning the conditions on m, n, p. Hence

evaluate
$$\int_{0}^{1} x^{5} (1-x^{3})^{10} dx$$
. 6+(2+4)+8

3. (a) Show that for $f(x) = \cos kx$ on $[-\pi, \pi]$, where k is not an integer,

$$\cos kx = \frac{\sin kx}{\pi} \left[\frac{1}{k} - \frac{2k\cos x}{k^2 - 1^2} + \frac{2k\cos 2x}{k^2 - 2^2} + \dots \right].$$

Deduce that $\pi \cos k\pi = \frac{1}{k} + 2k \sum_{n \in \mathbb{N}} \frac{1}{k^2 - n^2}$.

(b) Evaluate
$$\int_{0}^{1} dy \int_{y}^{1} e^{x^{2}} dx$$
. 12+8

4. (a) Show that the integral $\iint_E e^{\frac{y-x}{y+x}} dx dy$, where E is the triangle with vertices at (0, 0), (0, 1) and

$$(1, 0)$$
 is $\frac{1}{4} \left(e - \frac{1}{e} \right)$.

Or,

Evaluate $\iint_E x^{\frac{1}{2}} y^{\frac{1}{3}} (1 - x - y)^{\frac{2}{3}} dx dy$, where E is the region bounded by the lines x = 0, y = 0 and x + y = 1.

(b) Show that the volume included between the elliptical paraboloid $2z = \frac{x^2}{p} + \frac{y^2}{q}$, the cylinder

$$x^2 + y^2 = a^2$$
 and the xy plane is $\frac{\pi a^4 (p+q)}{8pq}$.

(3)

Or,

Let a function f be defined on a rectangle R = [0, 1; 0, 1] as follows:

$$f(x, y) = \begin{cases} \frac{1}{2} & \text{when } y \text{ is rational} \\ x & \text{when } y \text{ is irrational} \end{cases}$$

Show that (i)
$$\int_{0}^{1} dy \int_{0}^{1} f(x, y) dx = \frac{1}{2} \text{ and (ii) } \int_{0}^{1} dx \int_{0}^{1} f(x, y) dy \text{ does not exist.}$$
 4+6

Group - B

[Metric space]

(Marks: 15)

5. Answer any one question:

- (a) (i) For any two distinct points a, b in a metric space (X, d), prove that there exist disjoint open spheres with centres at a and b respectively.
 - (ii) In the metric space of real numbers (\mathbb{R} , d) with the usual metric, let $\rho(A, B)$ be the distance between two subsets A, B of \mathbb{R} . Show that $\rho(A, B) = 0$ where $A = \mathbb{N}$ and $B = \left\{ n + \frac{1}{2n} : n \in \mathbb{N} \right\}$.
- (b) (i) Let (X, d) be a metric space and $A, B \subset X$. Then show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$ (\overline{U} denote the closure of U).
 - (ii) If $\delta(A)$ and \overline{A} denote diameter and closure of a set A in a metric space (X, d), then prove that $\delta(A) = \delta(\overline{A})$.
- (c) (i) Consider the metric space (\mathbb{R}^2, d) where $d(x, y) = |x_1 y_1| + |x_2 y_2|$ for all $x = (x_1, x_2)$, $y = (y_1, y_2) \in \mathbb{R}^2$ for $a = (0, 0) \in \mathbb{R}^2$ and any positive number r, describe the open ball S(a, r) geometrically.
 - (ii) Let C[a, b] be the set of all real valued continuous functions defined on [a, b]. Define $d(f,g) = \sup_{f,g \in C[a,b]} |f(t) g(t)|. \text{ Show that } A = \left\{ f \in C[a,b] : \inf_{x \in [a,b]} f(x) > 0 \right\} \text{ is an open set.}$
- (d) Prove that C[a, b], the set of all real valued continuous functions defined on [a, b], is complete under the metric d where $d(f, g) = \sup\{|f(x) g(x)| : a \le x \le b\}$ for all $f, g \in C[a, b]$.

15

P(III)-Mathematics-H-7(Mod.-XIII)

(4)

- (e) (i) If a sequence $\{x_n\}_n$ is convergent in the metric space (X, d), then prove that for $a \in X$, the $\operatorname{set}\{d(x_n, a) : n \in \mathbb{N}\}$ is bounded.
 - (ii) In the metric space (\mathbb{R} , d) with usual metric, consider the sequence $\{F_n\}_n$ of sets where

$$F_n = \left[-5 - \frac{1}{n}, -5 \right] \cup \left[5, 5 + \frac{1}{n} \right] \text{ for all } n \in \mathbb{N}. \text{ Show that } \bigcap_{n=1}^{\infty} F_n \text{ is not singleton.}$$

Group - C

[Complex Analysis]

(Marks: 15)

- **6.** Answer *any two* questions :
 - (a) (i) Show that the image of a line T under the stereographic projection is a circle minus north pole in the Riemann sphere $x^2 + y^2 + \left(z \frac{1}{2}\right)^2 = \frac{1}{4}$.
 - (ii) Show that the function $\frac{\overline{z}}{z}$ is not continuous at the origin Z=0 for any choice of f(0). 5+2½
 - (b) (i) If f(z) and $\overline{f(z)}$ are both analytic in a region, then show that f(z) is constant in that region.
 - (ii) Prove or disprove: If $f: S \to \mathbb{C}$ is differentiable on S, where $S \subseteq \mathbb{C}$ and f'(z) = 0 for all $z \in S'$, then f is a constant function on S. 5+2½
 - (c) Let $f: \mathbb{C} \to \mathbb{C}$ be defined by

$$f(z) = \begin{cases} \frac{(\overline{z})^2}{z} , & \text{for } z \neq 0 \\ 0 , & \text{for } z = 0 \end{cases}$$

Show that Cauchy-Riemann equations are satisfied at z = 0, but the derivative of f fails to exist there. $7\frac{1}{2}$

- (d) If f(z) is an analytic function of z = x + iy, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |\operatorname{Re} f(z)|^2 = 2|f'(z)|^2$. 7½
- (e) Use Milne-Thompson method to find an analytic function whose imaginary part is given by :

$$v(x, y) = 3x^2y + y^3.$$
 7½