2020

MATHEMATICS — HONOURS

Fifth Paper

(Module - X)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

(Marks: 20)

Answer any one question.

- 1. (a) Let V and W be two vector spaces over a field F and $T: V \to W$ be a linear mapping. If $KerT = \{\theta\}$ and $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a basis of V, prove that $\{T(\alpha_1), T(\alpha_2), ..., T(\alpha_n)\}$ is a basis of $Im\ T$.
 - (b) Let $P_3(\mathbb{R})$ be the real vector space of all polynomials of degree atmost 3. Define $S: P_3(\mathbb{R}) \to P_3(\mathbb{R})$ by S(p(x)) = p(x+1) for all $p(x) \in P_3(\mathbb{R})$. Find the matrix of S relative to the ordered basis $\{1, x, x^2, x^3\}$ of $P_3(\mathbb{R})$.
 - (c) If the matrix of a linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ with respect to the ordered basis $\{(0, 1, 1), (1, 0, 1), (1,$

$$(1, 1, 0)$$
 of \mathbb{R}^3 is given by $\begin{pmatrix} 0 & 3 & 0 \\ 2 & 3 & -2 \\ 2 & -1 & 2 \end{pmatrix}$, then find dim(*Im T*).

- 2. (a) Let V and W be two vector spaces of finite dimensions over a field F and let $T: V \to W$ be a linear mapping. Prove that T is invertible if and only if the matrix of T relative to any chosen pair of ordered bases of V and W is nonsingular.
 - (b) A linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^4$ is defined by $T(x, y, z) = (y + z, z + x, x + y, x + y + z), (x, y, z) \in \mathbb{R}^3$. Find ImT and dimension of ImT. Also find nullity T.
- 3. (a) If a subgroup H of a group G is defined to be normal if $a Ha^- \subseteq H$ for all $a \in G$, prove that H is a normal subgroup of G if $a Ha^{-1} = H$ for all a in G.
 - (b) Is there any group G of order 6 with the quotient group G/Z(G) of order 3, where $Z(G) = \{a \in G; ax = xa \text{ for all } x \in G\}$? Justify your answer.
 - (c) Prove that any two infinite cyclic groups are isomorphic. Is this true for finite cyclic groups? Justify your answer. 6+4+(6+4)

Please Turn Over

- **4.** (a) Let G and G' be two groups and $\phi: G \to G'$ be an onto homomorphism. Let $H = \text{Ker}\phi$. Show that $G/H \simeq G'$. Hence show that there does not exist any homomorphism from Z_9 onto Z_6 .
 - (b) Let $a, b \in \mathbb{R}$ and a mapping $T_{ab} : \mathbb{R} \to \mathbb{R}$ be defined by $T_{ab}(x) = ax + b$, $x \in \mathbb{R}$. Let $G = \{T_{ab} : a \neq 0\}$. Assume that (G, *) is a group where * is the composition of mappings. If $H = \{T_{ab} : a = 1\}$, prove that H is a normal subgroup of (G, *).

Group - B

(Marks: 15)

Answer any one question.

- 5. If (A_1, A_2) is a covariant vector in Cartesian coordinates x^1, x^2 where $A_1 = \frac{x^1}{x^2}$ and $A_2 = \frac{x^2}{x^1}$, find its components in polar coordinates.
- **6.** (a) Show that angle between two vectors at a point in a Riemannian space is an invariant under coordinate transformation.
 - (b) Prove that the covariant derivative of the metric tensor g_{ii} vanishes.
- 7. Prove that if A_i and B_i be two covariant vectors, then $A_iB_j A_jB_i$ is a skew symmetric tensor.
- 8. Calculate the quantities (g^{ij}) and (g_{ij}) where the metric is given by $ds^2 = (dx_1)^2 + x_1^2 (dx_2)^2 + x_1^2 \sin^2 x_2 (dx_3)^2.$ Also calculate $\begin{cases} 2 \\ 2 \end{cases}$.
- 9. Prove that $A^{jk}[ij,k] = \frac{1}{2}A^{jk}\frac{\partial g_{jk}}{\partial x^i}$, where A^{ij} are components of a symmetric contravariant tensor of rank 2.

Answer either Group - C or Group - D

Group - C

(Marks: 15)

Answer any one question.

- **10.** (a) (i) Show that $L(t^n) = \frac{n!}{p^{n+1}}$, where *n* is a positive integer and t > 0.
 - (ii) Find the Laplace transform of f(t) defined by

$$f(t) = \begin{cases} 0 & \text{if } 0 < t < 2\\ 3 & \text{if } t > 2 \end{cases}$$

(b) Using Laplace transform solve
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 10y = 0$$
, when $y(0) = 1$, $y(\frac{\pi}{4}) = \sqrt{2}$.

(c) Find the power series solution of
$$\frac{d^2y}{dx^2} + (x-3)\frac{dy}{dx} + y = 0$$
 near $x = 2$.

11. (a) Evaluate
$$L^{-1}\left(\frac{1}{(p-3)^2} \cdot \frac{1}{p+4}\right)$$

- (b) Using Laplace transform, solve $y''(t) + 4y'(t) + 4y(t) = 4e^{-2t}$, y(0) = -1 and y'(0) = 4.
- (c) State a set of sufficient conditions for the existence of Laplace transform. Show that Laplace transform is a linear operator. If f is the Laplace transform of F, determine the Laplace transform

of G defined by
$$G(t) = \begin{cases} 0 & 0 < t < a \\ F(t-a) & t > a \end{cases}$$
 15

Group - D

(Marks: 15)

Answer any two questions.

12. State and prove the necessary and sufficient condition for a connected graph to be an Euler graph. $7\frac{1}{2}$

13. If n, e and f are respectively the number of vertices, number of edges and number of faces of a planar graph, then show that n - e + f = 2.

- 14. If $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum degrees of the vertices of a graph with n vertices and e edges then prove that $\delta(G) \le \frac{2e}{n} \le \Delta(G)$.
- 15. (a) Define complement of a graph. Show that the complement of P_4 (a path on 4 vertices) is again P_4 .
 - (b) In a tree T prove that there exists one and only one path between every pair of vertices. $7\frac{1}{2}$
- **16.** Construct the minimum spanning tree for the given graph using Prim's Algorithm. 7½

